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The problem of designing a payload fairing large enough to encompass a spacecraft with
an optical mirror up to twice the diameter of an expendable launch vehicle (EELV) is
considered. Optimization and computational fluid dynamics (CFD) methods are used to
design an asymmetric exterior shape for the fairing that meets specific aerodynamic design
goals. These aerodynamic goals include a balance of low lateral force on the fairing and
smooth variations in that force with respect to angle of attack across a range of Mach
numbers near Mach 1. Multiple design objectives are met by means of subsystem
metamodels which are combined in a single performance index. Finally, a discussion is
given of the combination of individual subsystem uncertainties to assess global uncertainty
on the objective, and how these might affect the optimization strategy.

Nomenclature
Cm = pitching moment coefficient
M = Mach number
OBJV = objective function value
ref = reference quantity
RSS = root sum of squares

U = uncertainty on the objective function

x = angle of attack
1) = uncertainty on the response surface
10 = roll angle

I. Introduction

n their review of the status of MDO, Lewis and Mistree' noted that the design and optimization of complex
multidisciplinary systems was experiencing a shift in which multidisciplinary tradeoffs and detailed analysis were
carried out at progressively earlier stages of the design cycle. Because the knowledge of the system is imprecise at
this stage, a corresponding, parallel, shift was described in which fuzzy heuristics and precise mathematical models
needed to be used together. The design optimization method used in this paper can be viewed, in a sense, as the
product of these shifts. High-fidelity computer simulations are brought in early in the design cycle through the use
of fast-running metamodel approximations of each subsystem. These dynamically evolving metamodels are used as
surrogates for the more expensive computer analyses. Because of the efficiency of the metamodel evaluations, this
approach additionally lends itself to the comprehensive characterization of uncertainty. The resulting method can be
described as a “probabilistic metamodel” allowing the assessment of design uncertainties and risk between design
alternatives.
Global metamodels and response surface technology are increasingly used in a variety of fields, including
structural reliability, instrument calibration, and aerodynamic and trajectory optimization, to name a few.*"
Because of their analytical nature, these models can be used for automated searches and are naturally well-suited to
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the acceleration of optimization tasks'>'* and rapid strategy evaluation. A central issue to constructing appropriate

response surface models is the so-called curse of dimensionality, in which the number of data points required to
characterize/support the surface increases exponentially with the number of independent variables. This difficulty is
well-known and, in effect, precludes the use of conventional schemes, such as polynomial and piecewise-
polynomial (finite-element) approximations. Neural networks,'>!® support vector machines,'” kernel methods,'s"
and multidimensional splines® all have proven capable of multidimensional data generalization and of (partially)
circumventing this difficulty. The particular approach used in this study is based on self-training radial basis
function networks which form the basis of the NEAR-RS (response surface) technology,?' a software system
consisting of two modules: a metamodel identification module, and a metamodel evaluation/interrogation module.
A graphical user interface included in this second module serves as a multidimensional viewer, which facilitates the
visualization of trends in high-dimensional data. A key aspect of the technology is the ability to estimate further
sampling needs and model quality, based on uncertainty estimation. The uncertainty estimation in NEAR-RS is
based on propagating statistical descriptions of uncertainty in measurements or input data to estimates of uncertainty
in the response surface coefficients themselves. This approach (described in Ref. 21) makes use of the covariance of
the output measurements and is based on the theory of best linear unbiased estimation. This technology provides a
rational basis for propagating uncertainty estimates throughout the design space of each subsystem. The subsystem
metamodels are then combined in a single performance index, or objective function, which is used to guide the
design. The last portion of the paper describes how the individual subsystem uncertainties are combined to assess
the global uncertainty on the objective, and how these might affect the optimization strategy.

II. Large Asymmetric Launch Vehicle Payload Fairing Design

This paper concerns the acrodynamic and structural design of a payload fairing large enough to encompass a
spacecraft with an optical mirror up to twice the diameter on an evolved expendable launch vehicle (EELV).2

A.Objective and Methods

The main design objectives at the early stages of the work were related to stability and control, as well as the mass
of the fairing. Optimization and computational fluid dynamics (CFD) methods were used to design an asymmetric
exterior shape for the fairing that meets specific aerodynamic design goals. These aerodynamic goals include a
balance of a low lateral force on the fairing and smooth variations in that force with respect to angle of attack, across
a range of Mach numbers near Mach 1.0.

The fairing surface was defined principally in terms of analytical functions. The cost to perform design
optimization increases significantly with the number of independent design variables; therefore, it was important to
minimize the number of control variables needed to parameterize the surface shape. This can be accomplished with
an analytical surface shape definition, rather than a surface defined by discrete points. Also, the approach sought to
impose the designer's understanding of aecrodynamics on the optimization process, and to focus the design on shapes
that would trigger flow separation gradually, to alleviate excessive aecrodynamic forces on the fairing.

:?pmximata end — |
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Figure 1. SEie and top views of payload fairing geometry.

Three generations of the aerodynamic design have been considered to date. Only the first two are discussed in
this paper. In the first-generation family of designs, the payload fairing geometry was initially parameterized using
nine free design variables, corresponding to a two-dimensional (unswept) version of the ramp shown in Fig. 1. The
nine control variables were the longitudinal minor axis and focus for the nose, the depths of the minor and major
axes, three variables controlling the height, location, and slope of the separation trigger, and two geometry transition
parameters. A main outcome of optimizing this first-generation family of designs was to confirm that flow
separation was needed in order to achieve the aerodynamic goals. The geometry of the second-generation family of
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designs is illustrated in Fig. 1, which shows side and top views of the three-dimensional payload fairing geometry,
along with some of the geometric design parameters. This fairing geometry was controlled by five independent
variables, which were (1) the length of the elliptical section of the nose (in side view), (2) the location of the apex of
the swept rearward-facing ramp (denoted “ramp leading edge” in the top view), (3) the ramp sweep angle
(parameterized by its tangent), (4) the length of the backward-facing ramp (“chord” in top view), and (5) the height
of the ramp.

Because the flow around the payload fairing involves flow separation, a Navier-Stokes CFD methodology
(Overflow?) was used to predict the steady-state forces and moments on the launch vehicle. The turbulence model
used was the Spalart-Allmaras model.** The active independent variables were used to automatically remesh the
vehicle's surface and recompute a new volume grid using Hypgen.” Grid convergence studies were conducted to
determine the optimal grid resolution needed. Using this grid resolution, individual CFD calculations took between
two and six hours, depending on the rate of convergence, which was affected by flow physics.

B.Approach

A global optimization scheme (described below) was applied to a continuous, analytical surrogate, rather than
the CFD calculations themselves. This allows a thorough search of the solution space without the cost of
performing actual CFD solutions. Naturally, the approach relies on the response surface being representative of the
performance of the designs, which may not be the case, particularly at the early stages of the design, when the
uncertainty is large (see discussion below). Nevertheless, our sampling or “database populating” strategy based on
minimizing the uncertainty only in promising areas of the design space was found to yield solutions satisfying the
problem constraints in a relatively small number of CFD calculations. Specifically, the response surfaces
corresponding to multiple dependent variables were combined into a single objective function on which the search
was performed. The individual dependent variables were the overall pitching moment, C,, at multiple aecrodynamic
conditions, each a specified combination of Mach number, angle of attack, and, possibly, roll angle. At Mach 1.0, it
was found that the load C,, could be minimized relatively easily, to the point of zero load or even load reversal.
Such a condition, however, was the result of massive flow separation over the surface of the fairing and,
consequently, tended to exhibit poor aerodynamic characteristics (i.e., a nonsmooth response with respect to angle
of attack). Another problem (not shown) was that minimizing the load at Mach 1.0 (the nominal specification)
frequently resulted in configurations that exhibited excessive loads at slightly supersonic Mach numbers, due to the
reduced extent of flow separation in supersonic flow. Both difficulties were addressed by carrying out the
optimization based on a measure of global acrodynamic performance, rather than on a single load. This measure of
global aerodynamic performance was specified as a multiobjective function designed to penalize the undesired
behaviors. The objective function was a linear combination of multiple “bucket” functions, one per explicitly
optimized aerodynamic condition. For each acrodynamic condition, the bucket function was designed to be minimal
near a specified target value C,, e, to return high values above a constraint C,, ..., and to rise again if the C,, value
was too low.

For example, for the first-generation family of designs a two-objective function was defined initially, based on
loads simultaneously optimized at the aerodynamic conditions (M, «, )., =(1.0,5°,0° and

aerol

(M, o, ¢),,.,=(12,5°0°) . Note that, of the initially nine design variables of the first-generation design, three
were found to have minimal effect on the acrodynamic performance and were, consequently, set to fixed values. The
remaining active independent variables defined a six-dimensional parameter space, which was initially seeded using
Latin Hypercube sampling (LHS) design-of-experiments methods.”® The results of these seed calculations were
used to form the initial response surfaces (one for each aerodynamic condition). A global search of the objective
function over the response surfaces would then “suggest” the next set of CFD runs based on the minimization of the
global performance index. This new batch of CFD calculations would then be used to populate and enrich the
design space, resulting in a new “design iteration” in this process. The global search performed at each design
iteration was the result of an exhaustive “scatter and poll” search strategy?’ on the global performance metamodel.
The particular implementation of the scatter and poll strategy used here involved parallel searches, each started from
random locations on the surface (the ‘“scatter” phase) and, from each of these random locations, uses a local
nongradient-based direct search® employing an interrogation stencil that was either translated or focused
(contracted), depending on the results of the evaluations on the stencil (the “poll” phase).

A mixed strategy was used to enrich the data set (i.e., compute further CFD solutions). It was found in the early
stages of design that the suggested optima were often on the boundary of the domain. Since some of the range limits
in the control variables were not “hard” limits, their ranges were expanded, allowing the optimizer to “explore”
beyond the initial boundaries by populating the data set in these areas. Each new batch of CFD calculations used
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LHS randomization for the independent variables, running 10 to 16 solutions at a time on a cluster of Linux
workstations. By contrast, the intermediate and later stages of the design were characterized by a focusing
(“exploitation”) of the parameter space on the most promising regions, at a given iteration of the design. Note that
these regions of interest did not always remain the most promising ones, as further CFD calculations would either
confirm or invalidate the trend predicted by the response surface at the previous design iteration.

C.Results

Figure 2 illustrates the result of the optimization procedure for the first-generation family of designs, in the form of
a cumulative plot of the calculated loads Ci,ueror and Ci.er02 after several design iterations. The plot insets show the
front and side views of the initial and final geometric designs. In this example, the various symbols are associated
with the various design iterations, in which successive waves of CFD data points were harvested in the process. The
results improve at successive design iterations because the metamodel is cumulatively enhanced each time by the
new knowledge provided by the latest CFD runs. In this case, the objective was to reduce each pitching moment
coefficient C,, to less than twice the corresponding load for a conventional fairing used on the Boeing Delta 4
Heavy. Thus, any point such that (C, / Cy,ref)acror < 2.0 and (C/ Coyref)aero2< 2.0 (i.e., inside the dashed line in Fig. 2)
constitutes an acceptable aerodynamic design. The main point of Fig. 2 is that, after just 10 design iterations (less
than 230 geometric configurations), a large number of acceptable designs were found, guided by the cumulatively
enhanced metamodel. This rather small number of CFD runs (for a six-dimensional parameter space and a highly
nonlinear response) is to be contrasted with the total number of metamodel interrogations used to drive the
optimization, which is on the order of three million.
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Figure 2.  Multiobjective optimization using cumulatively enhanced aerodynamic metamodels.

While the optimization exercise shown in Fig. 2 was largely successful at the explicitly optimized acrodynamic
control points, the presence of (and, indeed, reliance on) flow separation to reduce the moment imply that the
aerodynamic characteristics of the vehicle may be nonlinear. A consequence of this nonlinearity is that one cannot
rely on load reduction at one angle of attack to force a corresponding load reduction at all other angles of attack, as
would be the case for a configuration with linear aecrodynamics. This was verified for the nominally “acceptable”
solutions identified in Fig. 2, the majority of which exhibited highly nonlinear behavior, such as load sign reversals
at intermediate and nearby angles of attack.

A somewhat brute-force solution to this problem is to include additional acrodynamic constraints as part of the
objective function. However, the addition of such constraints, when spread over a large range of Mach numbers and
angles of attack, would be computationally prohibitive, since the number of CFD runs per geometric configuration
would grow accordingly. Parsimonious use of aerodynamic control points in the objective function is a critical
concern. To help choose candidate control points, acrodynamic sweeps were calculated for a number of geometries.
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These led to the following observations: (1) relaxing the target load from C,./ Cy,r = 1.0 (50% safety margin) to
C/ Corer = 1.8 (10% safety margin) reduces angle-of-attack nonlinearity, and (2) at supersonic speeds, the loads
behave approximately linearly. These observations led to the definition of a new multiobjective bucket function
seeking to proportionately constrain the Mach 1.0 aerodynamic loads at two angles (x=15" and «=1°), to
specify the o = 5° target loads at Mach 1.2 and 1.0 to 15% and 45% margin levels, respectively, relative to the
reference fairing at the same conditions, and to add a stability (effective slope) constraint at Mach 0.9 and o= 1°.
In essence, the new objective function sought to achieve load characteristics which mimicked those of the reference
vehicle, multiplied by 1.1 at (M, o, ¢),,.;=(1.0,5°,0°, and 1.7 at (M, «, P),,.,=(1.2,5°,0°), plus two

aerol —

linearizing conditions (M, &, $),..;=(1.0, 1°,0°) and (M, &, ),,..=(0.9, 1°,0°) . The optimization procedure
described above was repeated for the case of four simultaneous objectives, and successfully resulted in several
candidate solutions, starting shortly after two hundred geometric configurations. The angle-of-attack characteristics

of two of these solutions are illustrated in Fig. 3.
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Figure3.  Two examples of aerodynamic characteristics achieved as a result of a 4-point optimization.
Figure 3 shows the relative pitching moment, defined as the pitching moment divided by that of the reference
vehicle at (M, «, $),,,;=(1.0, 5°,0°) . The Mach 1.0 aerodynamics of the reference vehicle are indicated by the

dashed line. The symbols in Fig. 3 represent the results of converged CFD calculations, with the roll angle ¢ kept
equal to zero. Each plot depicts four square boxes which indicate the conditions at which the vehicle response was
explicitly optimized by way of the objective function. The insets provide a side-rear view of the two fairing
geometries, which look similar to the naked eye but clearly result in different aerodynamics, particularly in the
transonic range. Figure 3 shows that the near-linearization objective for the aerodynamics was accomplished, and
that this objective could be repeated on more than one vehicle.

While the steady aerodynamics objectives were achieved, the presence of a large two-dimensional rearward-
facing ramp in the optimized design was deemed problematic in terms of its potential for buffet. Consequently, a
second family of fairing designs was considered, in which the flow separation trigger consisted of a V-shaped swept
rearward facing ramp, as shown in Fig. 1. Also, stricter limitations were set of the height of the separation ramp,
and more stringent convergence requirements were imposed on the CFD calculations. The optimization procedure
described for Fig. 2 was repeated, with the exception that the initially set ranges for the control variables were not
expanded, i.e., they were considered as “hard” limits. The results of the optimization procedure are summarized in
Fig. 4.

Figure 4 provides a cumulative plot of the acrodynamic performance, as measured by the pitching moments at
two target aerodynamic conditions: (M, «, ¢),,,;=(0.9,5°,0° and (M,«,P),,.,=(1.2,5°,0°). These two

aerol —
conditions were included as part of the objective function, with the minimum in the objective function being
indicated in the plot by the + symbol. A flooded contour plot of the objective function is shown in Fig. 5, with
contours saturated at a value of 5, for ease of interpretation. By design, the objective function ranges from 0 to 20 in
value, saturates at 2 when the loads are too low, saturates at 20 when the loads are high, and exhibits a steep rise
(strong penalty) a short distance above the well (the region near the zero value minimum), located approximately at

the 10% and 15% margin conditions aerol and aero2, respectively. The white contour in Fig. 5 indicates the region
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of acceptable performance, ideally defined as an objective function value less than 0.5. In practice, regions with
objective function values up to 1.0 were considered worthy of further investigation.
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Figure 4. Cumulative plot of two-point performance optimization for chevron-shaped design.
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FigureS.  Plot of objective function value for optimization results shown in Fig. 4.

The results shown in Fig. 4 represent 320 fairing configurations, where different symbols indicate successive
design iterations, and the insets provide a perspective view of the initial and final geometries. An initial 64 seed
configurations were used to populate the five-dimensional design space, and form an initial response surface for
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global searching and direction discovery. These initial calculations represented in this case an initial investment of
20% of the computational resources used. This number is, of course, problem dependent, but compares favorably
with the Sobester et al's” rule-of-thumb recommendation of 35% of the available computational budget as a safe
choice of initial Latin Hypercube sample size.
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Figure 6.  Angle-of-attack aerodynamic characteristics for two-point optimization.

Although a near-linearity objective for the angle-of-attack aerodynamics was not explicitly formulated in this
case, owing to the computational burden this would have entailed, it is interesting to note (see Figure 6) that near-
linearity did result at the two Mach numbers (0.9 and 1.2) that were explicitly specified in the objective function.
Similarly to Fig. 3, the load curves depicted are nondimensionalized by the reference vehicle pitching moment at
(M, x,¢)=1(1.0,5°0° . For consistency with previous results, the optimized vehicle response at Mach 1.0 is
also shown in the figure, indicating a lack of smoothness that was later found to be characteristic of other Mach
numbers.

D.Optimization Strategy

The criteria or strategies used to enrich the design space in successive iterations of the optimization were based on
aerodynamics expertise, but also, to some extent, on heuristics, and on decisions made at each iteration of the
response surface metamodels. Therefore, the results shown in this paper are not those of a fully automated system
but, rather, of a system involving an expert-in-the-loop. Future versions of this system will be directed toward
greater automation, for faster turnaround and, perhaps more importantly, more precise documentation and archiving
of the processes leading to a given design. The asymmetric payload fairing design example described in this paper
is but one illustration of surrogate-based optimization, for which there are many examples in the literature. In
particular, the reader is referred to the seminal work of Jones et al'? concerning efficient global optimization when
dealing with limited quantities of expensive computational data, in which a closed-form expected improvement
function is used to balance local and global searches of the design space. This balance between the need to continue
searching the overall space (exploration) and the desire to focus in on a local optimum (exploitation) has also been
recognized in more recent studies'> emphasizing the possibility of automating these procedures for large problems.

The three optimization examples shown in this paper differ from each other by the objectives specified, the
initial seeding of the calculations, the dynamic parameter bound settings, and considerations of global vs. semilocal
metamodels for exploitation. What they have in common is a strategy primarily focused on exploitation, rather than
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a continued balance between exploitation and exploration. Aside from an initial design-of-experiments investment
in calculations aimed at a coarse characterization of the design space, the successive waves of design space
enrichment were based on exploiting the optima suggested by the response surfaces obtained at any given iteration
of the design. Typically, only one or two regions (three at the very most) of global optimality could be “followed,”
namely, focused-on for further CFD calculations. As will be seen below, adding computational points in promising
regions of the design space amounts to an uncertainty reduction strategy in those areas. If the results improve, i.e., if
the objective function is reduced, then the most promising subregions of that surface are followed, and so on. This
results in a focusing action, equivalent to a “numerical zooming” procedure in a complicated multidimensional
space. If, on the other hand, the new CFD results prove to degrade the objective function performance, then
backtracking to the range covered by the previous response surface iterate becomes necessary. Unfortunately, this
results in a complicated decision tree structure which (a) is potentially difficult to manage, and (b) becomes quickly
unaffordable. It is suggested that one of the keys to unlock this difficulty is the use of the metamodel uncertainty.

As mentioned previously, the radial basis function networks which form the basis of the metamodeling used in
this study permit the propagation of uncertainty, as described in Ref. 21. In the present examples, the metamodel
inputs are the results of the CFD calculations, which act as support vectors, and the output is a deterministic
response surface based on these vectors. It is anticipated that, in the not-so-distant future, analysis codes, such as
CFD, will yield comprehensive uncertainty bars bounding the nominal predictions. In situations where the
uncertainty on the input vectors is known, the response surface then becomes a probabilistic response surface, given
in the form of a mean (nominal) response surface and its variance. Because of the computational efficiency of the
constructed metamodels, Monte Carlo simulations of the combined, multiobjective uncertainty calculations can be
carried out in near real time, providing rapid feedback on the objective function and its potential for accuracy.

To illustrate how considerations of global
metamodel uncertainty might affect the design
strategy, consider the following examples, all derived
from the last optimization example. Figure 7 depicts 20
the objective function along a one-dimensional cut of
the design space. For ease of representation, the one-
dimensional cut was chosen to parallel the sweep
variable axis, and to go through the design optimum
(the point at which the objective function is
minimized, after 320 configurations). In the figure,
this minimum is located around sweep = 0.76. Note
that the choice of the sweep variable is unimportant,
as a similar reasoning can be applied to any of the
control variables.  Figure 7 is shown without
uncertainty, and is fairly representative of the
optimization work to date. Without any additional
information, all regions marked in red (objective L L ! 1 I
function less than 0.5) are regions where possible '
optima might exist.

Objective Function

Sweep

Figure 7. Implications of a search strategy based on

A different picture emerges when one takes into response surface alone.
account the uncertainty information. Figure 8 shows
the same cut of the objective function (solid line),
with the addition of the plus and minus uncertainty. The latter are depicted as dashed lines in the figure, and were
computed from 10,000 Monte Carlo samples, assuming input (CFD) Gaussian probability distributions of uniform
variances 0.043 and 0.035 for the C, /C, ., loads at Mach 0.9 and Mach 1.2, respectively. It is immediately
apparent that the uncertainty on the objective function is substantial. Only around sweep = 0.76 is there low
uncertainty, owing to the presence of an actual CFD data point there. Since the uncertainty on the response surfaces
is strongly correlated with the sampling (the further away from a support vector, the greater the uncertainty), and
because of the intentional strongly nonlinear nature of the objective function, any load combination that either
exceeds the objective function target loads, or lies far away from any real data point, will produce a large
uncertainty on the objective function. Based on this large uncertainty, the message of Fig. 8 is that, if one considers
the lower uncertainty bound to indicate the regions where suitable optima may still be found (OBJV-U < 0.5), then
the range of sweep (marked in red) is considerably greater than suggested in Fig. 7. This scenario represents one of
the extremes, in which no point or region may be excluded from exploration until proven unsuitable.
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Another extreme is to consider a strategy in
which only points or regions with good performance
and low uncertainty are pursued. This leads to a g Gt
strategy of focusing, typical of the later stages of
optimization in the examples shown in this paper.
Such a criterion is illustrated in Fig. 9, where the
range of points deemed worthy of exploitation
(indicated in red) now only represents 1% of the
overall range in sweep. Figure 9 is evocative of the
proverbial “finding a needle in a hay stack,” which is
what the objective function-driven optimization was
designed to do. This is to be contrasted to the
strategy of exploration, more appropriately
exemplified in Fig. 8, but for which the range of
sweeps still remaining to be explored is 60% of the
total range. While case dependent, this 60:1 ratio (in
a single, one-dimensional cut) certainly gives a feel
for the severity of the problem, when confronted with

Objective Function

the task of implementing a viable uncertainty-based Sweep
strategy in multiple dimensions. Yet, both aspects Figure 8.  Implications of a search strategy based on
(exploration and exploitation) are necessary. Without rejection of “impossible” areas.

exploitation, there is no rationale for the finding of an
optimum (except for random chance). And without
exploration, there is every chance of being stuck in a

local optimum, or finding no solution at all. — b
Additionally, even a pure exploitation strategy cannot (¢  [====s 0N

be started as such, and needs an initial exploration
phase to get the process initialized (as was done in the
optimization cases presented in this paper). It is clear
from the examples given above that a strategy that
primarily emphasizes exploration is a waste of
computational resources. It is also evident that one
based on exploitation cannot discover anything new,
is conditioned by the initial seeding of the design
space, and is destined to end with the first promising
region found, all at a considerable lost potential for
design opportunities. The ideas of Jones et al'?> and
Sobester et al,'* which call for a proper balance of
exploration and exploitation, are most attractive and
provide a rational framework for the allocation of L L L L J
computational resources. In the end, time and money N ' -
limitations may preclude the implementation of an
“ideal” global optimization strategy, assuming even
that such a strategy can be defined. Nevertheless, the
concept of using the response surface (metamodel)
uncertainty constitutes a potentially important step in
this direction.

Objective Function

Sweep

Figure 9. Implications of a search strategy based on
exploitation of confirmed “possible” areas
only.

As a final observation, we note that the very objective function which successfully forced the global search to
focus on an acceptable solution, by virtue of its strong nonlinearity also easily “saturates” the uncertainty, creating a
loss of information in the process. This concept is illustrated in Figure 10. The lower graph depicts, as before, the
nominal objective function, plus and minus its uncertainty, much of it saturated between 0 and 20. The upper graph,
on the other hand, depicts the uncertainty on the response surfaces themselves. Recall that two response surfaces
feed into the nonlinear objective function. Each is a five-dimensional function of the geometric control variables;

one represents the response at (M, «,¢),,,=(0.9,5°,0°, and the other the response at

aerol —
(M, o, ),.,,=(1.2,5°0° . For ease of representation, these uncertainties are combined in the RSS (root sum of
squares) sense and depicted as a single output, one-dimensional cut of
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RSS(6 (Cm/Cm,ref)) = \/(6(lecm,rqf))§eml + (6 (Cm/Cm ,ref))ieroZ (1)

where the & symbol denotes the total uncertainty. To a large extent, the RSS uncertainty is the result of sampling
uncertainty, with a floor level given by the input (CFD) uncertainty. The red lines in both upper and lower graphs
indicate the uncertainty that would result in the limit of infinite point coverage. Assuming that the nominal response
would not change, one can judge from the lower graph of Fig. 10 which regions of the space are susceptible to
uncertainty improvement as a result of further sampling. In all other regions, the only mechanism for reducing the
uncertainty further is to reduce the input uncertainty. Since this may not always be an option, for example if the
uncertainty is that associated with turbulence modeling rather than truncation error, one should take special care in
designing an objective function which not only drives the optimization towards a given goal, but also makes the
reduction of its uncertainty feasible. Alternatively, this information can be used to stop adding points in a region
where one cannot tell whether the improvement is statistically significant.
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Figure 10. Response surface uncertainty vs. objective function uncertainty.

III. Conclusion

The aerodynamic design of an asymmetric oversized payload fairing subject to stability constraints was used to
illustrate how high-fidelity simulations can be incorporated early in the design cycle. The present method uses
dynamically evolving metamodels as surrogates for the more expensive computer analyses, in an approach that
lends itself to the comprehensive characterization of uncertainty. An objective function formulation was used to
specify constraints, and to drive the process towards solutions satisfying the objectives. As a result, candidate
solutions were discovered after several hundred CFD runs. While the current design methodology did not make use
of the available uncertainty, it is suggested that the latter can be used as a driver in balancing the need for
exploration and exploitation in global optimization problems.
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