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The  aerodynamic  design  of  an  asymmetric  oversized  launch  vehicle  payload  fairing 
subject to stability constraints is used as an example of a derivative-free, expensive black box 
function  to  investigate  optimal  resource  allocation  when  designers  are  confronted  with 
limited computational budgets.  

Nomenclature
CDF = cumulative distribution function
CFD = computational fluid dynamics
DOE = design of experiments
EI = expected improvement function
LHS = latin hypercube sampling
N_DOE = number of DOE function calls
N_iter = total number of function calls
N_infills = number of infill function calls
OBJV = objective function value
p = probability
RBF = radial basis function

I. Introduction / Motivation
urrogate-based optimization is frequently a good choice when dealing with expensive function evaluations.1 

When using sequentially updated surrogates (also referred to herein as metamodels), one can neglect the cost of 
identifying the parameters of the metamodel as well as the cost of searching the surrogate, in comparison to the 
effort of obtaining a single real data point using either physics-based analysis or experimentation.   

S
The main steps involved in surrogate-based optimization include the initialization of metamodel parameters, the 

seeding of the initial design space using design of experiments (DOE) methods, metamodel/surrogate identification, 
global searching of the current surrogate, and the acquisition/evaluation of new data points (“infill” stage) based on 
the results of that search.  A termination criterion and a determination of final solution quality or confidence in the 
final real optimum are also required.  The choice of a metamodel type must consider a number of issues, including 
assumption requirements,  the  expected design landscape complexity  (if  known),  and  the  time  spent  training  or 
retraining the metamodel.  The optimization suitability of a given type of surrogate model is problem-dependent and 
is affected by factors such as the model's ability to fit complex local behavior, and the basic effort associated with 
the infill stage.  References 2 and 3 provide excellent reviews of surrogate-based optimization which can be used to 
this effect.   

The question addressed in this paper is that of choosing how to best allocate limited computational resources, 
specifically the choice between acquiring more DOE points a priori, leaving fewer resources for optimization-based 
infills, or limiting the initial DOE investment with the attending greater reliance on the results of the optimization. 
Allocating a greater percentage of computational resources to the initial DOE has natural advantages; these include 
(i) a better characterization of the global design space, and (ii) the fact that this stage, if the data are computational, 
can take advantage of parallel processing.  The downside of this approach is that, by limiting the number of infill 
points,  one  may  not  have  sufficient  resources  to  attain  either  the  true  optimum,  or  solutions  that  meet  certain 
suitability conditions, i.e., in a practical sense, achieve sufficient improvement.  Designers customarily rely on prior 
experience and expert knowledge to contend with this dilemma.  Indeed, informal surveys of opinions on this topic 
can  yield  anywhere  from  a  20%  recommended  investment  in  the  initial  DOE,  to  upwards  of  80%,  with  the 
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optimization being considered a final  solution “refinement.”   The latter  thinking  tends to  be more  prevalent  in 
organizations dealing with problems that lend themselves to local optimization.  However, with the advent of recent 
improvements in robust surrogate-based optimization, the practical use of Efficient Global Optimization (EGO) is 
becoming more of a possibility.  In addition, infill points resulting from the application of EGO algorithms populate 
the  design  space  in  ways  that  are  different  from,  yet  may  compete  with,  DOE,  thus  possibly  challenging  the 
conventional notions of what the “ideal ratio” may be between the number of DOE and infill points.

The results presented below constitute such an example.  They were collected as a follow-up to a benchmarking 
study presented at the 6th AIAA Multidisciplinary Design Optimization Specialist Conference (Ref. 4).  This paper 
presents some of the initial results, which are based on a CFD-based optimization problem offering a realistic level 
of  difficulty,  yet  that  is  computationally  manageable,  to  the  extent  that  meaningful  statistics  can be extracted. 
Details of the aerodynamic design problem being considered, along with the high-fidelity data description, can be 
found in Reference 4.

II. Methods
Surrogate model types range in complexity from polynomial regression and moving least squares to Kriging and 

support vector regression.  The approach used in this paper is based on radial basis function (RBF) models, either 
fixed basis RBF or parametric  RBF.4,5  The choice of these models is motivated by their qualities in terms of 
modeling  ability,  flexibility,  generalization  properties,  and  the  significant  advantages  they  offer  in  terms  of 
performance.5  The RBF class of surrogates covers a wide range of methods, from simple fixed basis RBF, to fully 
parametric RBF approaching the complexity of Kriging.  Within this class, one can trade generality for performance, 
depending on which parameters are solved by optimization (parametric RBF) versus which parameters are fixed 
(simple RBF).  The following describes the methods used in the results of Section III.  

A.  Radial Basis Function Model
In an N-dimensional design space, a surrogate function F : RN → R is constructed by satisfying data constraints at 

P available data points.  If this response surface acts as an interpolant, then the function F is required to satisfy the 
constraints

F  X i = Y i , i = 1, , P       (1)

where each  Xi  is an N-dimensional vector of design variables, and Yi are the corresponding dependent variables.  In 
the case where  F represents,  instead,  a regression model fit  to  the data,  then the response  surface is  required to 
minimize in the least squares sense the distance ║F(Xi) – Yi ║, i = 1,...,M, M ≥ P.

In the radial basis function approach, the metamodel  F  is expanded into basis functions  Φk which are radially 
symmetric about their control point, Γk :  

FX  =∑
k

ck k X , k , b k  k = f ∣∣X − k∣∣, b k        (2)

where  f  is a scalar shape function (for example, a Gaussian), bk is an adjustable scale or stiffness parameter, and ║.║ 
designates the Euclidean norm.  For example, if  f  is chosen to be a Gaussian: 

k X , b , bk  = exp−X − k 
T
 X −  k 

bk
2       (3)

With the additional assumptions that (a) the stiffness  bk is uniform, and (b) the control points are chosen among the 
available data points, the linear model regression design matrix equation [A][c] = [Y] is given by:

[
f ∣∣X 1−X1∣∣ f ∣∣X1−X 2∣∣  f ∣∣X 1−X P∣∣
f ∣∣X 2−X1∣∣ f ∣∣X 2−X 2∣∣  f ∣∣X 2−X P∣∣

⋮ ⋮ ⋮ ⋮
f ∣∣X M−X1∣∣ f ∣∣X M−X 2∣∣  f ∣∣X M−X P∣∣

] .[
c1

c2

⋮
cP
]= [

Y 1

Y 2

⋮
Y M

] (4)

In the case where uncertainty intervals for the Yi are available, and provided these intervals correspond to random 
uncorrelated noise (variance σ0

2), the variance of the surrogate prediction at point X is given by 

2 X  =  0
2 . X TAT A−1X  (5)

where Φ(X) = [Φ1 ,Φ2 ,...,ΦP ]T (see Ref. 6).  
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B.  Objective Function
The examples discussed in this paper consider the unconstrained minimization of a computationally expensive 

function Y(X) over a simply connected domain D:  
minimize 

{ x1 , x 2 , , x N }
Y X 

subject to X ∈ D
(6)

A key aspect of the surrogate-based optimization process is the search of the metamodel, since F(X) evaluations cost 
little in comparison to evaluations of the true computational function Y(X).  

Additionally, in the case where an uncertainty model (e.g., (5)) is available, it  is possible to make use of the 
expected improvement function (EI) traditionally used in Kriging.7  This function has shown considerable promise3 in 
terms of driving the optimization and being able to balance exploitation and exploration efficiently.   

Assuming a normally distributed error at point  X with standard error σ(X), and defining  X* as the current best 
solution, the expectation of improving upon F(X*) can be expressed analytically7,3 as

EI  X  = E [max  F X *−F X  , 0 ] =  F  X *−F  X   .  F X *−F X  ,  X  
                    X .  F X *−F X  ,  X  

(7)

where   is the probability density function

 y , =
1

 2
exp− y2

22        (8)

and   is the normal cumulative distribution function, 

 y , =
1
2 [1  erf  y

2 ]              (9)

Thus, Problem (6) is replaced by the following alternative problem involving the surrogate  F  and its standard error σ: 
maximize 

{ x1 , x 2 , , x N }
OBJV X

subject to X ∈ D
(10)

where the objective function value OBJV(X)  is either {EI(X)} if an uncertainty model σ(X) is available, or {-F(X)} 
otherwise.‡

C.  Update/Infill Criterion
Problem (6) is solved by making use of a sequentially  constructed radial basis function surrogate  F(X).   The 

surrogate is initialized using design of experiments techniques.  The metamodel search algorithm used in this study is a 
form of generalized pattern search2 which uses a gradient-free, multistart, steepest ascent, hill climbing algorithm to 
maximize the expected improvement.  At each iteration of the optimization, local optima resulting from the metamodel 
search are sorted based on objective function performance, and the top  m virtual performers (Xi =  argmax [OBJV], 
i = 1,...,m) are then used to spawn m new computational analyses of the real function, i.e., Y(Xi = 1,...,m) is subsequently 
obtained.  

These new computational analyses are used to augment the RBF set of potential regressors Φ k=1..,P as well as the 
set of potential constraints {X,Y(X)} i = 1,...,M.  In addition, the metamodel parameters bk can be dynamically adjusted 
based on cross-validation error minimization or other criteria.  The update stage therefore results in solving a new linear 
system, similar to (4), for the new surrogate F(X).  The results presented in this paper use m = 1, corresponding to a 
standard, serial implementation of what Ref. 3 refers to as a “two-stage” infill.  

III. Results 
The CFD-based aerodynamic problem considered as a test case for this study was described in detail in Ref. 4. 

This test problem (the aerodynamic design of an asymmetric  launch vehicle fairing) was chosen because of its 
suitable complexity and relevance to the aerospace community.  Highlights and key characteristics of this problem 
are summarized below:

• 5 independent variables describing the outer mold line of the fairing,
• 2 dependent variables (corresponding to the overall pitching moment at two different Mach 

numbers / angle of attack combinations and treated as individual subsystems),

‡ Note that, in the case where σ(X) is not available, using OBJV(X) = -F(X) is equivalent to using OBJV(X) = EI(X) with σ0 = 0. 
Tests using infinitesimally small input variance (e.g., σ0 = 10-10) have been shown (Ref. 4) to produce virtually identical results, 
although using OBJV(X) = -F(X) is more computationally efficient.
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• nonaxisymmetric shock structure and three-dimensional flow separation and reattachment, resulting 
in highly nonlinear, highly sensitive responses for each subsystem,

• stability constraint enforced via nonlinear objective function (used to combine the two subsystem 
response surfaces into one figure of merit, OBJV),

• large number of local minima,
• acceleration via response surface fit of 640 Navier-Stokes calculations.

Figure 1. Cumulative distribution function of the objective 
function  OBJV  based on 1.4 million DOE samples. 

In this study, the efficiency of optimization (measured by the number of expensive function evaluations N_iter) 
was considered in the statistical sense, i.e., by repeating each optimization 100 times from different random initial 
conditions, or, more specifically, by using 100 different realizations of the DOE, for a given number of DOE points. 
The number of DOE points,  N_DOE, was either 500, 50, or 15.  The DOE realizations thus collected resulted in 
1,375,000 samples,  the  cumulative  distribution  of  which is  shown in Fig. 1  which,  therefore,  characterizes  the 
reference data set.  

Figure 2. Probability of success (defined as OBJV ≤ 0.1) based 
on 100 independent realizations.  The ▲ symbols 
indicate the beginning of the optimization/infill stage; 
prior iterations represent DOE samples.
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Consistent with Ref. 4, the design optimization is considered successful if the value of the objective function 
OBJV at real points  is below a threshold value of 0.5, and is considered highly successful if  OBJV ≤ 0.1.  The 
interest, therefore, is in identifying designs which lie in the tail end (lower-left portion) of the distribution shown in 
Fig. 1.  As previously observed,4 the number of function evaluations required to reach this condition depends not 
only on the optimization method chosen, but also depends sensitively on the initial design of experiment.  It is, 
therefore, necessary to consider the relative success of one strategy over another in a statistical sense, by means of 
ensemble processing. 

Figure 3. Infill-stage probability of success (defined as 
OBJV ≤ 0.1) based on 100 independent realizations 
when starting from different numbers of DOE points. 

To this end, 100 different realizations of the initial DOE were considered, and, from each of these 100 DOE, a 
sequential surrogate-based optimization was initiated.  The results of these 100 design histories were postprocessed 
to  determine  the  empirical  probability  of  obtaining  real  designs  reaching  the  objective (e.g.,  OBJV ≤ 0.1)  as  a 
function of  the total  number,  N_iter = N_DOE + N_infills,  of  expensive function calls.   For  a  given number of 
function calls, the empirical probability of success is defined as the number of successful optimizations divided by 
100 (the total number of trials).  Provided one chooses an optimization method that does not get “stuck” in a local  
optimum, the probability eventually reaches 1.0 after a sufficient number of optimization steps (and, thus, infill 
points) have been executed.  

An example of  this  empirical  probability  is  given in  Fig. 2 for  the three  values  of initial  DOE cardinality, 
N_DOE.  The change in slope at the onset of the infill stage (marked by a ▲ symbol) is evident, and indicates an 
acceleration of the rate at which acceptable designs are found as a result of the directed search.  It is noteworthy that, 
for  this  optimization  problem,  the  rate of  success  is  only  marginally  better  for  N_DOE = 500,  compared  to 
N_DOE = 50 and N_DOE = 15.  This is especially visible in Fig. 3, which shows the same data plotted as a function 
of the number of infill points, N_infills.  

While one would generally expect an optimal trade-off between the initial cost (N_DOE) and subsequent savings 
due to a greater post-DOE efficiency (higher dp/dN_infills), it is clear (Fig. 2) that this trade-off occurs early (i.e., 
for a small number of DOE points).  The lack of smoothness in the present results, due to an insufficient number of 
realizations, precludes a precise determination of the optimal N_DOE, however.

Similar results, corresponding to the different “success” threshold definitions  OBJV ≤ 0.2 and  OBJV ≤ 0.5 are 
shown in Figs. 4 and 5, respectively.  In all cases, the observations are similar: increasing the initial DOE investment 
from 15 or 50 to 500 does not pay off: a given probability of success can be reached 75 to 100 infills sooner at 
N_DOE = 500,  compared  to  the  lower  N_DOE,  but  these  savings  come at  the  price  of  a  corresponding  initial 
“handicap” of, respectively, 485 and 450 DOE function calls.
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Figure 4. Infill-stage probability of success (defined as 
OBJV ≤ 0.2) based on 100 independent realizations 
when starting from different numbers of DOE points. 

Figure 5. Infill-stage probability of success (defined as 
OBJV ≤ 0.5) based on 100 independent realizations 
when starting from different numbers of DOE points. 

Of course, the above remarks implicitly assume a serial execution of the costly function evaluations, such as 
might perhaps be the case for large-scale physical experiments.  In a high-performance computer setting, the DOE 
stage can often be performed in parallel and, thus, the conclusions are reversed if clock time is the primary cost 
metric.  Specifically, when starting with a larger  N_DOE, a higher starting probability of success (the result of a 
denser sampling of the design space) and the improved slope dp/dN_infills both combine to create greater efficiency, 
as shown in Figs. 3-5.
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IV. Concluding Remarks / Discussion

The present asymmetric fairing optimization results indicate that, in the absence of parallelism, it is more efficient to 
devote computational resources to the infill stage of surrogate-based optimization than to its DOE counterpart.  This 
is  an intriguing and somewhat counter-intuitive finding which warrants further investigation/confirmation.  It  is 
recommended  that  additional  examples  drawn  from  the  optimization  literature  be  considered  for  similar 
experiments, in order to ascertain the generality of these conclusions.
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