
Statistical Benchmarking of Surrogate-Based
and Other Optimization Methods

Constrained by Fixed Computational Budget

Patrick H. Reisenthel* and Daniel J. Lesieutre†

Nielsen Engineering & Research, Inc., Santa Clara, California 95054

The aerodynamic design of an asymmetric oversized payload fairing subject to stability
constraints was used as an example of a derivative-free, expensive black box function to
benchmark the relative performance of 16 different optimization methods, ranging from
gradient-based to simulated annealing and genetic algorithms/evolution strategies, including
four methods with surrogate-based accelerators. The focus of the present paper is on the
practical attainability of getting an acceptable solution quickly. The various algorithms are
compared using performance benchmarking in a statistical sense, yielding an “efficient
frontier” with special emphasis on the case when designers are confronted with small
computational budgets.

Nomenclature
argmax = argument of the maximum
CMO = cumulative metamodel optimization
Cm = pitching moment coefficient
DOE = design of experiment
E[.] = expected value
EI = expected improvement function
f = shape function
F = surrogate function
LHS = latin hypercube sampling
NL = nonlinear functional
OBJV = objective function value
p = probability
RBF = radial basis function
x,X = design variables vector
y,Y = expensive, true function
σ = standard error
^ = estimated
* = best real performer
<.> = average across realizations

I. Introduction / Motivation
upporting dynamic, complex/nonlinear, and multidisciplinary optimization tasks requires novel methodologies
capable of assimilating data from disparate (heterogeneous) sources in a potentially high-dimensional parameter

space. Recent progress in cumulative metamodel technology, for example, fast multidimensional nonparametric
response surface technology, has suggested improved multidisciplinary optimization methodologies capable of
combining a priori mathematical models, numerical predictions, and noisy experimental data. Optimization
methods which can perform robustly, consistently, and economically are of great interest to engineering and
scientific design in MDO applications. The point of view adopted in this paper is the following: given finite
computational resources and expensive function evaluations, it is critical that one selects the optimization method
that is most likely to yield a satisfactory design with as few design evaluations as possible. To this end, Cumulative
Global Metamodels (CGM) have been proposed as an aid for conceptual design of highly integrated flight vehicle
and air space concepts.1 These methods can be used with or without derivative information. However, frequently,

S

* Vice President & Chief Scientist, 2700 Augustine Drive, Suite 200, Santa Clara, CA 95054, Senior Member.
† Senior Research Engineer, 2700 Augustine Drive, Suite 200, Santa Clara, CA 95054, Senior Member.

American Institute of Aeronautics and Astronautics
1

51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

18th
12 - 15 April 2010, Orlando, Florida

AIAA 2010-3088

Copyright © 2010 by Nielsen Engineering & Research, Inc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

single- and multidisciplinary analysis methods use expensive legacy codes that do not supply derivative information.
Also, the results of high-fidelity analyses tend to be noisy, due to grid dependence and convergence issues.
Therefore, the focus of the present paper is on derivative-free expensive “black box” optimization, specifically, the
performance benchmarking of such methods in a statistical sense when the user is confronted with a fixed
computational budget.

The present paper is organized as follows. Section II describes the surrogate-based optimization schemes used
and, in particular, cumulative metamodel optimization (CMO). Section III considers the relative performance of
various surrogate-based optimization schemes implementing CMO using a 1-D tutorial. An example of these
methods is applied to an aerodynamic optimization problem, which is described in Section IV. The results of the
optimization are given in Section V and summarized and discussed in Section VI.

II. Methods
It is well known that response surface-based surrogates can be used for automated searches and are naturally

well-suited to the acceleration of optimization tasks2-4 and rapid strategy evaluation. Given the specification of
objectives and constraints, the basic optimization algorithm (Fig. 1) consists typically of the following steps:
(1) initialization of metamodel parameters, (2) seeding of initial design space using design of experiments (DOE)
methods, (3) metamodel/surrogate identification, (4) global search of current surrogate, (5) acquisition/evaluation of
new data points (“infill” stage), (6) termination and/or model updates, and (7) determination of final solution quality.

Figure 1. Outline of metamodel-based optimization algorithm.

When choosing a metamodel type, one must consider a number of issues, including assumption requirements,
the expected design landscape complexity (if known), and the time spent training or retraining the metamodel. The
optimization suitability of a given type of surrogate model is problem-dependent and is affected by factors such as
the model's ability to fit complex local behavior, and the basic effort associated with the infill stage. References 4
and 5 provide excellent reviews of surrogate-based optimization which can be used to this effect.

Surrogate model types range in complexity from polynomial regression and moving least squares to Kriging and
support vector regression. The approach used in this paper centers on the use of radial basis function (RBF) models,
either fixed basis RBF or parametric RBF. The choice of these models is motivated by their qualities in terms of
modeling ability, flexibility, generalization properties, and the significant advantages they offer in terms of
performance.6 The RBF class of surrogates covers a wide range of methods, from simple fixed basis RBF, to fully
parametric RBF approaching the complexity of Kriging. Within this class, one can trade generality for performance,
depending on which parameters are solved by optimization (parametric RBF) versus which parameters are fixed
(simple RBF). In this paper, we will refer to two variants of these methods: (1) fixed parameters RBF, and
(2) quasi-parametric RBF, in which the metamodel parameters are automatically updated (Fig. 1, Step 3) throughout
the optimization.

A. Radial Basis Function Model
In N-dimensional design space, the sought-after surrogate is a function F : RN → R which is constructed by

satisfying data constraints at P available data points. If this response surface acts as an interpolant, then the function F
must satisfy the constraints

F  X i = Y i , i = 1, , P (1)

where each Xi is an N-dimensional vector containing the design variables and Yi the corresponding dependent variable.
In the case where F represents, instead, a regression model fit to the data, then the response surface is required to
minimize in the least squares sense the distance ║F(Xi) – Yi ║, i = 1,...,M, M ≥ P.

In the radial basis function approach, the metamodel F is expanded into basis functions Φk which are radially
symmetric about their control point, Γk :

American Institute of Aeronautics and Astronautics
2

FX  =∑
k
ck k X , k , b k  k = f ∣∣X − k∣∣, b k  (2)

where f is a scalar shape function (for example, a Gaussian), bk is an adjustable scale or stiffness parameter, and ║.║
designates the Euclidean norm. For example, if f is chosen to be a Gaussian:

k X , b , bk  = exp−X − k 
T
 X −  k 

bk
2  (3)

With the additional assumptions that (a) the stiffness bk is uniform, and (b) the control points are chosen among the
available data points, the linear model regression design matrix equation [A][c] = [Y] is given by:

[
f ∣∣X 1−X1∣∣ f ∣∣X1−X 2∣∣  f ∣∣X 1−X P∣∣
f ∣∣X 2−X1∣∣ f ∣∣X 2−X 2∣∣  f ∣∣X 2−X P∣∣

⋮ ⋮ ⋮ ⋮
f ∣∣XM−X1∣∣ f ∣∣XM−X 2∣∣  f ∣∣XM−X P∣∣

] .[
c1

c2

⋮
cP
]= [

Y 1

Y 2

⋮
YM

] (4)

In the case where uncertainty intervals for the Yi are available, and provided these intervals correspond to random
uncorrelated noise (variance σ0

2), the variance of the surrogate prediction at point X is given by

2 X  =  0
2 . X TAT A−1X  (6)

where Φ(X) = [Φ1 ,Φ2 ,...,ΦP]T (see Ref. 1). Although there are fundamental limitations to this kind of error modeling
(since it pertains to repeatability errors), it will be used nonetheless to illustrate the use of the expected improvement
function in the tutorial examples of Section III.

B. Objective Function
The examples discussed in this paper consider the unconstrained minimization of a computationally expensive

function Y(X) over a simply connected domain D:
minimize

{ x1 , x 2 , , x N }
Y X 

subject to X ∈ D
(7)

A key aspect of the surrogate-based optimization process is the search (Fig. 1, Step 4) of the metamodel, since F(X)
evaluations cost little in comparison to evaluations of the true computational function Y(X).

Additionally, in the case where an uncertainty model (e.g., (6)) is available, it is possible to make use of the
expected improvement function (EI) traditionally used in Kriging.2 This function has shown considerable promise5 in
terms of driving the optimization and being able to balance exploitation and exploration efficiently.

Assuming a normally distributed error at point X with standard error σ(X), and defining X* as the current best
solution, the expectation of improving upon F(X*) can be expressed analytically2 as

EI X  = E [max F X *−F X  ,0] =  F  X *−F  X   . F X *−F X  ,  X  
  X . F X *−F X  ,  X  

(8)

where  is the probability density function

 y , =
1

 2
exp− y2

22  (9)

and  is the normal cumulative distribution function,

 y , =
1
2 [1  erf  y

2 ] (10)

Thus, Problem (7) is replaced by the following alternative problem involving the surrogate F and its standard error σ:
maximize

{ x1 , x 2 , , x N }
OBJV X

subject to X ∈ D
(11)

where the objective function value OBJV(X) is either {EI(X)} if an uncertainty model σ(X) is available, or {-F(X)}
otherwise.‡

‡ Note that, in the case where σ(X) is not available, using OBJV(X) = -F(X) is equivalent to using OBJV(X) = EI(X)
with σ0 = 0. Tests using infinitesimally small input variance (e.g., σ0 = 10-10) have been shown to produce virtually
identical results, although using OBJV(X) = -F(X) is more computationally efficient.

American Institute of Aeronautics and Astronautics
3

C. Update/Infill Criterion
Problem (7) is solved by making use of a sequentially constructed radial basis function surrogate F(X). The

surrogate is initialized using a sparse design of experiment (Fig. 1, Step 2). The metamodel search algorithm used in
this study is a form of generalized pattern search4 which uses a gradient-free, multistart, steepest ascent, hill climbing
algorithm to maximize the expected improvement. At each iteration of the optimization, local optima resulting from
the metamodel search are sorted based on objective function performance, and the top m virtual performers (Xi =
argmax [OBJV], i = 1,...,m) are then used to spawn m real computational analyses Y(Xi = 1,...,m).

These new computational analyses augment the RBF set of potential regressors Φ k=1..,P as well as the set of
potential constraints {X,Y(X)} i = 1,...,M. In addition, the metamodel parameters bk can be dynamically adjusted based
on cross-validation error minimization or other criteria. The update stage (Fig. 1, Step 3) therefore results in solving a
new linear system (4) for F(X). The results presented in this paper use m = 1, corresponding to a standard, serial
implementation of what Ref. 5 refers to as a “two-stage” infill.

III. A One-Dimensional Example
Prior to describing the application of the above methods to an aerodynamic design function involving CFD of

unusual configurations, it is useful to understand how the methods perform on a simpler, one-dimensional problem.

A. Choice of 1-D Function
The data used in the problem described in

Sections IV and V are obtained from Navier-Stokes
CFD computations. Given the nature of the
statistical benchmarking targeted in this research,
rather than making CFD calls on demand, which
would be prohibitively expensive, the present study
is made possible by interrogating an existing CFD
database. This CFD database thus represents the
expensive function Y(X).

Because database evaluations are the result of an
interpolation of CFD data, the one-dimensional test
function considered here is based on the same
interpolation scheme as the one used in the CFD
database (see Section IV). By doing so, the function
is not only useful as a tutorial, but is also representative of the problem considered in Section V. The one-dimensional
version of the expensive function, denoted y(x), is considered over the domain D = [0,1] and is the three-bucket
function shown in Fig. 2.§

B. Cumulative Metamodel Optimization Variants
The methods described in Section II are referred to here as Cumulative Metamodel Optimization (CMO). To

better understand how the variants of the method may affect their probabilistic outcome, this section considers four
different variations. The first three are dependent on the existence of an uncertainty model. The fourth represents the
particular case in which no uncertainty is assumed and is analogous to the approach used in Section V.

Figure 3 compares the results of six optimizations representing three optimization strategies, two uncertainty
models, and three different sets of initial conditions. Each row in Fig. 3 corresponds to a given optimization run. For
each run, four plots are shown. The first three plots provide snapshots of the surrogate-based optimization as it
progresses. The first snapshot corresponds to the state of the optimization at the beginning of the first iteration, i.e.,
after the DOE step and after the calculation of the initial metamodel (end of Step 3, Iteration 1 in Fig. 1). Each design
of experiment consists of only two points, which are selected based on a latin hypercube sampling strategy. At the end
of the 18th iteration, 20 function evaluations y(x) have been performed (two as part of the initial design, and 18 infills).
The corresponding “late stage” portrait is shown as the third snapshot. The second snapshot (labeled “intermediate
stage”) corresponds to the optimization after anywhere from 4 to 9 iterations. Each snapshot indicates the following:
(a) the true function y(x), labeled “database” (black line), (b) prior function evaluations (whether infills or DOE, shown
as □ symbols, (c) the current surrogate F(x) (solid blue line), (d) the uncertainty on the current surrogate, depicted as
F(x) ± σ(x) (dashed blue lines), and (e) the value of the expected improvement function (red line, log scale). The
fourth plot in each row is a summary performance profile for the given optimization. Each performance profile
indicates the evolution of the best current minimum y* as a function of the total number of function evaluations, ni.

§ Although not strictly identical, a good approximation of this function over the interval x ∈ [0,1] is given by the
polynomial y(x) = 0.520558 – 0.07002374x – 24.1693x2 – 638.5461x3 + 7418.51x4 – 29340.51x5 + 57419.98x6

– 60358.23x7 + 32720.3x8 – 7197.405x9.

American Institute of Aeronautics and Astronautics
4

Figure 2. One-dimensional test function.

A
m

erican Institute of A
eronautics and A

stronautics

5

Method Initial Design Intermediate Stage Late Stage Performance Profile

W
it

h
 U

n
ce

rt
ai

n
ty

 M
o

d
el

1

• Cumulative metamodel
optimization

• Expected improvement function
• Parameteric RBF
• Uncertainty model #1

2

• Cumulative metamodel
optimization

• Expected improvement function
• Parameteric RBF
• Uncertainty model #2

3

• Cumulative metamodel
optimization

• Expected improvement function
• Simple RBF/resolution limited
• Uncertainty model #2

N
o

 U
n

ce
rt

ai
n

ty
 M

o
d

el

4

• Cumulative metamodel
optimization

• Exploitation-only strategy
• Simple RBF/resolution limited

5

• Cumulative metamodel
optimization

• Exploitation-only strategy
• Simple RBF/resolution limited
• Alternative initial design #1

6

• Cumulative metamodel
optimization

• Exploitation-only strategy
• Simple RBF/resolution limited
• Alternative initial design #2

Plot legend:

Figure 3. Examples of Surrogate Optimization Strategies.

All six optimizations in Fig. 3 are expected improvement function driven, i.e., OBJV(x)= EI(x). For the first three
optimizations, a value of σ0 = 0.1 is assumed, while a value of σ0 = 10-10 is used in the last three optimizations to
emulate, using the same method, the case where there is no uncertainty model available. Cases 1 through 4 (Fig. 3) use
the same DOE as initial conditions. Cases 5 and 6 are repeats of Case 4 using different initial conditions. All cases
employ an RBF surrogate with regressors of the form

k X , b , bk  =
1

 X −  k 
T
X −  k  − bk

2 (12)

For Cases 3-6, the bk parameters are fixed from iteration to iteration. By contrast, Cases 1 and 2 benefit from an
adaptation algorithm which modifies the bk parameters from iteration to iteration (Fig. 1, step 3).

Cases 1 and 2 in Fig. 3 differ by the uncertainty model they use. While Cases 2 through 6 use the uncertainty
propagation model (“uncertainty model #1”) described in Eq. (6), Case 1 simulates the case of an uncertainty model
associated with computational experiments having zero uncertainty at the computed points but nonzero uncertainty
inbetween (“uncertainty model #2”). Such uncertainty intervals will result, for example, from variations between fully
populated regression models which exactly interpolate all the data.¶ The result of each optimization iteration is the
detection of x = argmax [EI] which is used as the next infill point before updating the metamodel using {x,y(x)}. It
can be seen from the last stage snapshot of Cases 1 and 2 that all minima of the function are found, and that the
surrogate accurately approximates the underlying function. Case 3 also detects all minima, but with a lesser global
accuracy. This is due to the lack of adaptivity of this variant, which has two effects: (1) less exploration, and
(2) limited fitting ability.

Case 4 is identical to Case 3 except that Case 4 has no uncertainty model. The late stage optimization snapshot
shows a poor approximation of the underlying function for this set of initial conditions, and, accordingly, a solution that
is trapped in a local minimum. The outcomes of two alternative sets of initial conditions are shown as Cases 5 and 6.
Case 5 optimization results in the solution being trapped in the same local optimum around x = 0.675 and a poor
quality surrogate. Case 6 optimization, on the other hand, ends up finding the global minimum.

C. Ensemble Processing
The sample results shown in Fig. 3 (Cases 4 through 6) suggest 1:3 odds in favor of finding the global minimum

when using a simple a simple pure-exploitation strategy. The results of Cases 1 through 3 also suggest that a strategy
which appropriately balances exploitation and exploration has the greatest probability of finding the global optimum.
This is, of course, a well-established fact (see, e.g., Ref. 5), and the expected improvement function is designed to do
so. However, for OBJV(x)= EI(x) to be an effective driver, the uncertainty model/levels must be correct.

Too often, optimization methods are compared on the basis of a limited number of realizations. In the case of
surrogate-based optimization, there is a strong coupling between successive infills and the evolution of the surrogate.
This is also true of the dependence on the initial DOE, especially in data starved situations. While it is clear that a
richer DOE coverage can mitigate the dependence on initial conditions, the choice of a two-point DOE in one
dimension is representative of data-starved situations, which occur with either large numbers of design variables, or
limited resources, or both.

Figure 4. Comparison of optimization data profiles resulting from 100 realizations for three different
strategies. Left: pure exploitation with simple RBF. Center: expected improvement function with
simple RBF. Right: expected improvement function with parametric RBF.

To further clarify the relative performance of the methods shown in Fig. 3 , the results of Cases 2, 3, and 4 are each
repeated 100 times using different initial design of experiments. Each design of experiment corresponds to a two-point
latin hypercube sampling, and the same 100 initial conditions are used in each case. The corresponding aggregate of

¶ approximated here using the artefact 2 X  =  0
2 .∣X TAT A−1 X  − 1∣ as an alternative to (6).

American Institute of Aeronautics and Astronautics
6

individual optimization data profiles is shown in Fig. 4. Although large DOE-to-DOE variations occur, several
observations can be made from the raw data. Knowing that the difference between the primary and secondary minima
is Δ ≈ 0.11, it can be seen from the center plot, for example, that approximately 10% of realizations do not fall in the
basin of attraction of the global optimum when using fixed RBF. By contrast, all 100 realizations succeed in finding
the global optimum region when using adaptive refinement (Fig. 4, right hand side plot).

Plots such as those shown in Fig. 4 can be
postprocessed as cumulative distribution functions
corresponding to either vertical or horizontal “cuts”
through the data. Examples are shown in Figs. 5
and 6. Figure 5 compares the three optimizations of
Fig. 4 in terms of their cumulative probability
distribution function after 18 iterations. The
cumulative distribution functions indicate the
probability p(y* ≤ y) that the best real function
evaluation y* not exceed a given threshold value y.
The value of the threshold is shown on the abscissa,
referenced to the value of the global minimum, yMIN.
As expected, there is a less than 90% probability
p(y* ≤ Δ) of escaping the secondary minimum for the
“expected improvement, RBF” method. Figure 5
reveals that this probability drops to less than 65% if
one uses an exploitation-only strategy. It is also
interesting to note that, for low values of the threshold
(y - yMIN ≤ 10-2), the fixed RBF methods achieve a
higher probability of success.

This last observation is confirmed in Fig. 6,
which depicts the probability that y* - yMIN not exceed
10-1 (solid lines) and 10-5 (dashed lines), respectively,
as a function of the number of function calls. The
results indicate that, while the “expected
improvement, parametric RBF” method is thorough,
in terms of finding the correct basin of attraction
every time, there is a price to pay, in terms of how
deep a minimum is found for the given number of
iterations. By contrast, the methods which spend less
time exploring and, accordingly, more time exploiting
(“expected improvement, RBF” and “exploitation,
RBF”), are more likely to find a deep minimum, as
exhibited by the p(y*- yMIN ≤ 10-5) results.

In other words, an adaptively refined, expected
improvement-driven method is a better approach for
“degrossing” the problem, i.e., focussing the method
on the right area of the design space. Although
further research is required, the present results suggest
that, once in the correct basin of attraction, a simple
infill strategy may be most efficient.

D. Application to Aerodynamic Design
With a few exceptions (see Table 1), the “exploitation, RBF” method and example described above are the one-

dimensional analog of the problem considered in Section V.

Table 1. Summary of differences between the optimization problems considered in Sections III and V.

Test Cases # variables (N) Design Functions RBF Surrogates Objective Function

Fig. 3, Cases 4-6 1 y(x) F[y(x)] OBJV = F

Section V 5 Cm1(X), Cm2(X) F1[Cm1(X)], F2[Cm2(X)] OBJV = NL(F1,F2)

American Institute of Aeronautics and Astronautics
7

Figure 5. Cumulative distribution functions after ni = 20
function evaluations.

Figure 6. Probability of reaching the global optimum as a
function of the number of function evaluations
for two different objective function thresholds.

In Section V, ensemble processing similar to Figs. 5 and 6 is used to reduce the variability of optimization results when
comparing between different methods.

IV. CFD Database Background
In Ref. 7, the problem of designing a payload fairing large enough to encompass a spacecraft with an optical

mirror up to twice the diameter of an expendable launch vehicle (EELV) was considered. Optimization and
computational fluid dynamics (CFD) methods were used to design a nonaxisymmetric exterior shape for the fairing
that meets specific aerodynamic design goals. These aerodynamic goals include a balance of low lateral force on the
fairing and smooth variations in that force with respect to angle of attack across a range of Mach numbers at
transonic conditions. In this application, the multiple design objectives are met by means of subsystem metamodels
which are combined into a single performance index.
 The fairing surface is defined principally in terms of analytical functions. The cost of performing design
optimization increases significantly with the number of independent design variables; therefore, it was important to
minimize the number of control variables needed to parameterize the surface shape. This is accomplished with an
analytical surface shape definition, rather than a surface defined by discrete points. Also, the approach seeks to
impose the designer's understanding of aerodynamics on the optimization process, and to focus the design on shapes
that trigger flow separation gradually, to alleviate excessive aerodynamic forces on the fairing.

Figure 7. Side and top views of payload fairing geometry.

Three generations of the aerodynamic design were considered. Only the first two are discussed here. In the
first-generation family of designs, the payload fairing geometry was initially parameterized using nine free design
variables, corresponding to a two-dimensional (unswept) version of the ramp shown in Fig. 7. The nine control
variables were the longitudinal minor axis and focus for the nose, the depths of the minor and major axes, three
variables controlling the height, location, and slope of the separation trigger, and two geometry transition
parameters. A main outcome of optimizing this first-generation family of designs was to confirm that flow
separation was needed in order to achieve the aerodynamic goals. The geometry of the second-generation family of
designs is illustrated in Fig. 7, which shows side and top views of the three-dimensional payload fairing geometry,
along with some of the geometric design parameters. This fairing geometry was controlled by five independent
variables, which were (1) the length of the elliptical section of the nose (in side view), (2) the location of the apex of
the swept rearward-facing ramp (denoted “ramp leading edge” in the top view), (3) the ramp sweep angle, (4) the
length of the backward-facing ramp (“chord” in top view), and (5) the height of the ramp.

Because the flow around the payload fairing involves flow separation, a Navier-Stokes CFD solver (Overflow8)
was used to predict the steady-state forces and moments on the launch vehicle. The turbulence model used was the
Spalart-Allmaras model.9 The active independent variables were used to automatically remesh the vehicle's surface
and recompute a new volume grid using Hypgen.10 Grid convergence studies were conducted to determine the
optimal grid resolution needed. Using this grid resolution, individual CFD calculations took between two and six
hours, depending on the rate of convergence, which itself depended on the flow physics of individual cases.

Multiple response surfaces (metamodels), each corresponding to one dependent variable, were combined into a
single objective function on which the search was performed (see Table 1). The individual dependent variables
were the overall pitching moments, Cm, at multiple aerodynamic conditions. These multiple aerodynamic conditions
were chosen to correspond to combinations of Mach number, angle of attack, and could potentially include roll
angle.

At Mach 1.0, it was found that the load Cm could be minimized relatively easily, to the point of zero load or even
load reversal. Such a condition, however, was the result of massive flow separation over the surface of the fairing
and, consequently, tended to exhibit poor aerodynamic characteristics (i.e., a nonsmooth response with respect to
angle of attack). Another problem was that minimizing the load at Mach 1.0 (the nominal specification) frequently
resulted in configurations that exhibited excessive loads at slightly supersonic Mach numbers, due to the reduced
extent of flow separation in supersonic flow. Both difficulties were addressed by carrying out the optimization

American Institute of Aeronautics and Astronautics
8

based on a measure of global aerodynamic performance, rather than on a single load. This measure of global
aerodynamic performance was specified as an objective function designed to penalize the undesired behaviors. This
objective function (OBJV) combined multiple nonlinear “bucket” functions, one per explicitly optimized
aerodynamic condition.

One of the outcomes of this optimization process was the generation of 320 separate fairing configurations.
These were used in the present study as the support data of a “black box” function, referred hereafter as “the CFD
database.” This CFD database is an approximate representation of the launch vehicle aerodynamics, which agrees
exactly with the CFD at 320 points of the design space. While the fidelity of this model is uncertain away from the
support data, we expect it to hold reasonably well near the real CFD points. It is important not to confuse the
reference, fixed “CFD database” with the dynamic metamodel being updated during the course of the optimization
(Fig. 1, Step 3).

V. Benchmarking of Optimization Methods
The present section begins with a summary of the goals and methods of surrogate-based optimization, followed

by a description of the specific objectives of this study and the emphasis on positive outcome at finite resources
rather than asymptotic convergence. The optimization methods used in this study are then tabulated and the method
used for their comparison is described.

A. Introduction
In surrogate-based optimization approaches, the optimization is carried out on analytical surrogates in lieu of

the computational analyses themselves. While it is not difficult to understand the performance advantages of
metamodel optimization when the surrogates approximate the actual problem with reasonable accuracy, an
important question is whether this has any practical value if the knowledge of the design space is sparse or
imprecise. Indeed, an argument can be made that the knowledge of the design space is necessarily imprecise at the
early stages of design, and that this lack of certainty is inherent to high-dimensional spaces, since they cannot be
sufficiently populated a priori. For this reason, most metamodel optimization approaches include a critically
important last step, which is to verify the optimum (i.e., characterize the neighborhood around the presumed
optimum using real analysis).

Efficient surrogate-based optimization seeks to make use of the limited (and often imprecise) information
contained in early and intermediate versions of the surrogate model. The point of view adopted here is one where
not only are the computational analyses expensive “black box” function calls, but the computational and time
resources are limited by budgetary constraints. It is desirable to make use of as few real computational analyses as
possible in order to solve the optimum (or reach an acceptable optimum). To do this, a metamodel surrogate must
be formulated at the earliest stages of the design, typically from an initial (low-count) design of experiment (DOE).#
This metamodel is searched, and results of the search are then used to spawn one or more real computational
analyses which provide the infill data used to update the surrogate.

CMO can be described as an implementation of surrogate-based optimization based on a pruning-free fully-
populated regression model. As such, the underlying metamodel is constantly updated using new real information,
making it, in turn, more accurate. The updated metamodel becomes the object of a new metamodel search, which
in turn spawns new support data, and so on (see Fig. 1), until an acceptable optimum is reached (and, ultimately,
verified). The CMO approach is similar to other adaptive response surface approaches. Every adaptive response
model is based on two elements: (1) flexible approximations to the underlying physics-based model, and
(2) smart/efficient sampling methods. The present sampling strategy is goal-driven, rather than primarily concerned
with model accuracy (Refs. 11-14) per se. Local (or even global) accuracy may result from the addition of support
data in regions of interest, but it is not a necessary condition a priori (compare, for example, the late stage surrogates
in Fig. 3). The only thing that matters is that it improves the design, i.e., drives the design (real, not virtual) towards
the goals expressed in the objective function formulated by the user.

B. Objective
While the idea that adaptive response surfaces can be used to accelerate the design process is not new,4,15 it is

important to quantify the relative performance of optimization methods on problems other than “toy problems” such
as the one considered in Section III. The design of an oversized asymmetric fairing described in Section IV
provides a viable target for benchmarking because it is a difficult problem relevant to the aerospace community and
because it is computationally tractable, since the CFD database is itself a surrogate for Navier-Stokes calculations.

An interesting aspect of the CMO method using radial basis functions is the occasionally erratic nature of the
optimization trajectories/data profiles (see Fig 3). In our experience, the approach is likely to cause initial
divergence, resulting in an efficiency penalty which must be overcome. In other words, it cannot be taken for

In the RBF method, the optimization can start with as little as one function evaluation.

American Institute of Aeronautics and Astronautics
9

granted that a net acceleration should always be achieved. The fact that the dynamically updated metamodel will
end up approximating the physics may be true, but only asymptotically, and provided there is sufficient coverage,
which depends on the infill strategy. The main focus of this paper is not on asymptotics (that number of CFD
calculations could not possibly be afforded!), but, instead, concerns the practical attainability of getting an
acceptable solution quickly.

C. Approach
To perform this benchmarking study, 16 optimization methods were applied to the aerodynamic design of a

nonaxisymmetric payload fairing, as described in Section IV. This test problem was chosen because of its suitable
complexity and relevance to the aerospace community. The salient characteristics of this problem are as follows:

• five independent variables controlling the shape of the fairing (see Fig. 7),
• two dependent variables (corresponding to the overall pitching moment at different Mach number

and angle of attack combinations), treated as individual subsystems,
• nonaxisymmetric shock structure and three-dimensional flow separation and reattachment, resulting

in highly nonlinear, highly sensitive responses for each subsystem,
• stability constraint enforced via nonlinear objective function (used to combine the two subsystem

response surfaces into one figure of merit, see Table 1),
• global optimization problem (large number of local minima),
• encapsulated CFD model based on a database of 640 Navier-Stokes calculations.**

It is well-known that the suitability of one optimization method over another depends on the problem at hand.
Therefore, a wide class of optimization methods (gradient-based, genetic algorithms, simulated annealing, evolution
strategies) were examined, with the goal of quantifying their relative efficiency on this problem. This was
accomplished by exercising the optimization methods provided within the modeFRONTIERTM software.16

A summary of the optimization methods used in this study is provided in Table 2.

Table 2. Summary of optimization methods.
Name Description

SIMPLEX Nelder & Mead Simplex algorithm for nonlinear optimization problems (Ref. 17).

B-BFGS Bounded Broyden-Fanno-Fletcher-Goldfarb-Shanno gradient algorithm (Ref. 18).

SA Simulated Annealing (Ref. 19).

MOGA-II Multi Objective Genetic Algorithm (Ref. 16).

ARMOGA Adaptive Range Multi-Objective Genetic Algorithm (Ref. 20).

MOSA
(discrete)

Multi Objective Simulated Annealing, discrete design space (Ref. 21).

MOSA
(continuous)

Multi Objective Simulated Annealing, continuous design space (Ref. 21).

MACK Multivariate Adaptive Crossvalidating Kriging (Ref. 16).

NSGA-II Non-dominated Sorting Genetic Algorithm II (Ref. 22).

FMOGA-II Fast Multi Objective Genetic Algorithm using internal response surface acceleration (Ref. 16).

FSIMPLEX Fast Simplex algorithm using internal response surface acceleration (Ref. 16).

NLPQLP Sequential Quadratic Programming solver (Ref. 23).

MMES Multimembered Multiobjective Evolution Strategy (Ref. 16).

DES Derandomized Evolution Strategy (Refs. 24-26).

1P1-ES (1+1)-Evolution Strategy (Refs. 24-25).

CMO-1 Cumulative Metamodel Optimization (Ref. 27).

Each scheduler in modeFRONTIERTM consists of a (DOE, optimization method) pair. Each optimization
method, whether gradient-, or population-, or evolutionary-based, uses an initial design-of-experiment table. This
initial DOE table provides either the initialization for the search path (e.g., SIMPLEX, B-BFGS, ∗SA, NLPQLP,
CMO-1), or an initial population from which to evolve (e.g., ∗GA and ∗ES methods). The same space-filling Latin
Hypercube Sampling (LHS) design method was used as the DOE method for all of the optimization methods
investigated. The number of LHS samples was kept fixed at 15 points. For a given trial, the same 15 points were
used by all methods. Special care was taken to export the DOE table to make sure that the CMO-1 method

** 320 configurations calculated at two different flow conditions

American Institute of Aeronautics and Astronautics
10

(exercised outside modeFRONTIERTM) used exactly the same initial conditions as all other methods. Regardless of
optimization method, the querying of the CFD database was executed using a simple shell script.

The benchmarking exercise was carried out on a single-objective optimization problem, namely the
minimization of the objective function OBJV referred to in Section IV. The efficiency of the various methods is
compared in the following manner. During the optimization process, various regions of the design space are visited
and the resulting design objective function values are stored in a design database. Each design ID corresponds to
one geometric configuration, which, in this study, corresponds to two CFD calculations (one per Mach number and
angle of attack combination). Since we are concerned with optimization using expensive computational analyses,
the convention throughout this report is to equate the cost (time) of optimization with the number of design IDs,
denoted Niter in the following figures. Note that the function count is conservative, in the sense that, even in the
case of optimization methods that use gradients and for which the gradients had to be approximated by finite
differences, only the nominal design is counted. And the same goes, of course, for any optimization that is assisted
by an internal response surface accelerator, in which case only the real design IDs are counted; response surface or
virtual ones are not.

Thus, the ultimate metric in this study is
the number of designs (real, not virtual) that
need to be evaluated in order to achieve a
desired performance objective. Specifically,
we are interested in comparing the various
methods in terms of how many function calls
are required to meet the design objectives.
To do so, we keep track of the “current best”
solution (i.e., minimum OBJV) at any given
iteration of the design. Naturally, this
produces a monotonically decreasing
function exhibiting discrete steps each time a
lower minimum is found. As demonstrated
in Section III, the location of these steps and
how deep a minimum is reached depends not
only on the optimization method used, but
also on the initial DOE. The latter
dependence is a consequence of the
multimodality of the problem being solved,
i.e., the existence of a multiplicity of local
minima. Due to this multimodality, a
hypothetical “Method A” could be more efficient than another hypothetical “Method B” for a given initial DOE, but
their relative ranking could be reversed when initiating the calculations from a different initial DOE. For this
reason, optimizations need to be carried out using repeated independent random trials (realizations), where each trial
corresponds to one 15-point initial DOE. To maximize statistical significance, 100 random trials were conducted,
for a total of 1,600 optimizations. Scheduler parameters were chosen so that each method within
modeFRONTIERTM would run for approximately 500 real designs (i.e., 500 CFD database queries). An example of
the raw optimization results data for the case of the MOGA-II method is given in Fig. 8 in the form of data
profiles28 for 100 realizations of the min(OBJV) function versus the number of function calls.

For each method, the stochastic results are processed in two ways. The first consists of averaging the results of
individual realizations of min(OBJV), yielding a smoother representation of the average scenario. While
informative, a problem of this representation is that, since the underlying probability distributions are not
symmetrical about the mean, the average can be misleading. The second type of processing computes the
probabilities of exceeding preset OBJV thresholds based on the accumulated distribution histograms.

By construction, the OBJV values in the present application range from 20 (worst) to 0 (best). It follows that
values of OBJV below a threshold of 0.5 can be thought of as being associated with the top 2.5% performers in the
design space. Similarly, those below 0.2 represent the top 1% performers, and so on.

D. Results
Figure 9 summarizes the performance of all 16 optimization methods. The results are presented in the form of

(a) the average across realizations of min(OBJV) (denoted <OBJV>, top graph), and (b) the probability, denoted
p(OBJV≤0.5), that min(OBJV) not exceed a 0.5 threshold value (bottom graph). Both are plotted as a function of the
number of designs/real function evaluations, Niter.

American Institute of Aeronautics and Astronautics
11

Figure 8. Variability of min(OBJV) data profiles plotted as a
function of the number of real function evaluations.

Figure 9. Comparison of mean of min(OBJV) and probability p(min(OBJV) ≤ 0.5) as a function
of the number of designs.

Looking at the averages (Fig. 9, top graph), it is clear that some of the evolution strategies, along with methods
such as SIMPLEX, FSIMPLEX, and MACK do rather poorly on this problem, at least within the first 500 design
iterations. The best performer amongst the standard methods initially is B-BFGS, which lowers <min(OBJV)>
faster than any of the other methods early on, but stalls after approximately 120 iterations. The reason for this is that
further iterations only contribute to finding deeper (more precise) local minima, but do not improve the odds of
finding better optima. After approximately 150 iterations, ARMOGA dominates the other methods. Specifically,
<min(OBJV)> in ARMOGA reaches 0.1 in approximately 490 iterations. By 500 iterations, the runner-ups (MOSA
(discrete), MOGA-II, NSGA-II, MOSA (continuous), and FMOGA-II) only reach between 0.17 and 0.25, while
<min(OBJV)> for all other methods remains larger than 0.36.

In contrast to these methods, CMO-1 quickly drives <min(OBJV)> to low values, reaching 0.08 before 100
iterations (see Table 3). It must be stressed that this comparison applies identical initial conditions for all methods,
and that the initial conditions are those randomly generated within modeFRONTIERTM's DOE module.

Table 3. Ranking of optimizers based on min(OBJV) performance at Niter = 500.

Name
<OBJV>

Niter = 50 Niter = 100 Niter = 200 Niter = 500

CMO-1 0.519 0.078 0.026 0.026

ARMOGA 0.835 0.566 0.339 0.098

MOSA (discrete) 1.023 0.851 0.564 0.172

MOGA-II 0.964 0.756 0.484 0.190

NSGA-II 1.105 0.797 0.400 0.221

MOSA (continuous) 1.010 0.861 0.594 0.229

FMOGA-II 0.899 0.637 0.383 0.243

SA 0.992 0.756 0.544 0.363

MMES 0.938 0.700 0.541 0.366

NLPQLP 1.014 0.678 0.419 0.394

B-BFGS 0.679 0.433 0.395 0.395

American Institute of Aeronautics and Astronautics
12

Name
<OBJV>

Niter = 50 Niter = 100 Niter = 200 Niter = 500

MACK 1.106 1.000 0.867 0.494

FSIMPLEX 1.004 0.958 0.838 0.791

SIMPLEX 1.715 1.535 1.440 1.379

1P1-ES 5.205 4.779 4.651 4.569

DES 5.311 5.167 5.120 5.100

Another way to examine the results is to consider the probability of reaching our objective, expressed by
p(min(OBJV) ≤ threshold). The lower plot in Fig. 9 depicts this probability for an operational threshold value
of 0.5. The CMO-1 method outperforms all other methods, reaching a 99% probability of success within 93
function calls on average (and 100% success in less than 110 function calls). By comparison, at 100 iterations, the
overall runner-up (B-BFGS) only has a 58% probability of success, with the next largest probability of success
obtained with ARMOGA, which gradually increases to 93% by Niter = 500. All other methods perform worse on
this problem.

The graph shown in the lower portion of Fig. 9 is a measure of systematic efficiency. It does not necessarily say
that a local objective function minimum of less than 0.5 cannot be reached, for example, by a gradient or simplex-
type method. It simply says that these methods are less likely to do so. Specifically, it quantifies how much less
likely they are to do so than CMO. Indeed, even a random sampling strategy is not immune to finding a low
minimum; it is simply less likely to do so than a rational optimization method. For reference, when sampling the
design space randomly 50,000 times (the equivalent of 100 trials with 500 random numbers each), only 72 designs
are found such that OBJV ≤ 0.5. Similarly, a sampling of the design space using a 50,000-point Latin Hypercube
DOE yields 73 acceptable designs, representing a less than 0.15% probability of success. Both of these are
indicated by the symbols in the lower right-hand corner of Fig. 9. If one lowers the OBJV threshold from 0.5 to 0.1
(from top 2.5% performers to top 0.5% performers), the random and DOE odds of success decrease further
to 0.03%.

It is noteworthy that this simple implementation of CMO represents at least a five-fold increase in efficiency
factor over the best-performing standard method (ARMOGA), in the sense that a 90% probability of reaching the
objective is achieved in 1/5th the number of evaluations. Most importantly, as the threshold decreases
(corresponding to a more demanding objective), this efficiency factor grows further, as shown in Figs. 10 and 11 for
threshold values of 0.2 and 0.1, respectively. This trend towards further increased efficiency is consistent with the
results of Han and Chatterjee.15

Figure 10. Comparison of probability p(min(OBJV) ≤ 0.2) as a function of the number of designs.

A summary of the relative performance of each optimization method, ranked according to p(min(OBJV)≤0.2) at
Niter = 500 is given in Table 4. Based on the results of Figs. 9-11, it is clear that no single method dominates
unconditionally. Which method performs best statistically for a given number of iterations depends on the

American Institute of Aeronautics and Astronautics
13

expectation or definition of “success.” For example, in the unlikely event that “success” is defined as a greater than
25% probability of reaching min(OBJV) ≤ 0.1, then, according to Fig. 11, B-BFGS dominates (reaching this
likelihood in just 45 designs). If, on the other hand, “success” is defined as a 99% or more probability of reaching
the same threshold, min(OBJV) ≤ 0.1, then CMO - 1 is the only successful method,†† reaching this level in 135
designs.

Figure 11. Comparison of probability p(min(OBJV) ≤ 0.1) as a function of the number of designs.

Table 4. Ranking of optimizers based on p(min(OBJV) ≤ 0.2) performance at Niter = 500.

Name
p(min(OBJV)≤0.2)

Niter = 50 Niter = 100 Niter = 200 Niter = 500

CMO-1 0.30 0.89 1.00 1.00

ARMOGA 0.05 0.24 0.57 0.90

NSGA-II 0.01 0.12 0.54 0.78

MOGA-II 0.04 0.09 0.27 0.76

MOSA (discrete) 0.01 0.05 0.17 0.74

FMOGA-II 0.03 0.18 0.57 0.73

MOSA (continuous) 0.02 0.06 0.16 0.66

B-BFGS 0.29 0.53 0.58 0.58

NLPQLP 0.11 0.36 0.54 0.55

MMES 0.05 0.14 0.32 0.55

SIMPLEX 0.14 0.36 0.45 0.53

SA 0.01 0.08 0.17 0.37

1P1-ES 0.05 0.15 0.30 0.37

DES 0.06 0.21 0.30 0.32

FSIMPLEX 0.12 0.16 0.18 0.23

MACK 0.01 0.03 0.06 0.22

Regardless of the details of which method dominates in which Niter range, what is important, in this
“optimization of optimizations” is the fact that there exists an “efficient frontier.” By definition, a point residing on
the efficient frontier (seen as the envelope of the 15 standard method curves in Figs. 9-11) is such that (a) for a

†† (based on the maximum of 500 iterations used in this exercise)

American Institute of Aeronautics and Astronautics
14

given number of function calls, no other method yields a higher probability of success, and (b) for a given
probability of success, all other methods require a greater number of iterations. In other words, any point that is not
on the efficient frontier is either riskier (lower probability of success) or costlier (higher number of function calls).
It can be seen from the results of Figs. 9-11 that the present cumulative metamodel optimization method appreciably
stretches the efficient frontier.

Further, accepting de facto that response surface acceleration techniques are a given, one can limit the
comparison of the CMO-1 method to only those optimization methods that use an internal response surface
accelerator. Three of the benchmarking methods examined in this study (MACK, FMOGA II, and FSIMPLEX) do
so. FMOGA II and FSIMPLEX use an internal adaptive response surface (Kriging) to speed up the search path,
thus reducing the overall number of real designs (which are, again, the only ones being counted). The MACK
(Multivariate Adaptive Crossvalidating Kriging) method is different: its goal is to adaptively sample the design
space where the interpolation is less accurate. The comparison of CMO-1 to these three methods is shown in
Fig. 12.

Figure 12. Objective function threshold-based performance comparison of four different response surface-
assisted optimization methods based on 100 random trials. Left: p(min(OBJV) ≤ 0.5), center:
p(min(OBJV) ≤ 0.2), right: p(min(OBJV) ≤ 0.1).

VI. Concluding Remarks / Discussion
The aerodynamic design of an asymmetric oversized payload fairing subject to stability constraints was used as

an example of a derivative-free, expensive black box function to compare the relative performance of 16 different
optimization methods. The challenging multimodal nature of this optimization problem required examining the
results in a statistical sense, using rigorous application of identical initial conditions for each optimization method,
and a conservative count of function calls.

The main result of the benchmarking study is a measure of systematic efficiency, quantifying how much more
likely the cumulative metamodel optimization method is of reaching the design objective, compared to any of the
other methods tested. This includes methods which use an internal adaptive response surface (Kriging) to speed up
the search path. Specifically, an acceleration by at least a factor of five was found in terms of systematic efficiency,
based on an “apples-to-apples,” comparison of optimization data profiles.

As a cautionary note, several qualifiers are in order. The first is the fact that the present study was performed
with each method's default parameters. It is possible, indeed likely, that fine-tuning the adjustable parameters of
some of these methods would change their ranking. Second, the present results, while thorough in a
statistical/ensemble sense, are for one specific application. This application (the design of a large asymmetric
fairing subject to stability constraints) presented specific challenges, such as severe nonlinearity and a multiplicity of
local optima. How well the CMO method will perform on different applications and test problems is a question that
is left for future research.

Acknowledgments
The authors gratefully acknowledge the support of the optimization benchmarking portion of this work under

NASA SBIR Phase I contract number NNX07CA06P. The supporting CFD database was developed under prior
funding by the Air Force Research Laboratory (SBIR contracts FA9453-04-M-0132 and FA9453-05-C-0056).
Finally, we would like to express our appreciation to ESTECO North America for providing access to the
modeFRONTIERTM software for the comparison portion of this study.

American Institute of Aeronautics and Astronautics
15

References
1Reisenthel, P. H., Love, J. F., Lesieutre, D. J., and Childs, R. E., “Cumulative Global Metamodels with Uncertainty - a Tool

for Aerospace Integration,” The Aeronautical Journal, Vol. 110, No. 1108, Jun. 2006, pp. 375-384.
2Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient Global Optimization of Expensive Black-Box Functions,”

J. Global Opt., Vol. 13, 1998, pp. 455-492.
3Sóbester, A., Leary, S. J., and Keane, A. J., “On the Design of Optimization Strategies Based on Global Response Surface

Approximation Models,” J. Global Opt., Vol. 33, No. 1, 2005, pp. 31-59.
4Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K., “Surrogate-Based Analysis and

Optimization,” Progress in Aerospace Sciences, Vol. 41, 2005, pp. 1-28.
5Forrester, A. I. J. and Keane, A. J., “Recent Advances in Surrogate-Based Optimization,” Prog. Aero. Sci., Vol. 45, Issues 1-

3, Jan.-Apr. 2009, pp. 50-79.
6Reisenthel, P. H., Allen, T. T., Lesieutre, D. J., and Lee, S. H., "Development of Multidisciplinary, Multifidelity Analysis,

Integration and Optimization of Aerospace Vehicles," NEAR TR 657, Nielsen Engineering & Research, Santa Clara, CA, 2010.
7Reisenthel, P. H., Childs, R. E., and Higgins, J. E., “Surrogate-Based Design Optimization of a Large Asymmetric Launch

Vehicle Payload Fairing,” AIAA-2007-361.
8Buning, P. G., Jespersen, D. C., Pulliam, T. H., Klopfer, G. H., Chan, W. M., Slotnick, J. P., Krist, S. E., and Renze, K. J.,

“Overflow User’s Manual Version 1.8r,” NASA Ames Research Center, 2000.
9Spalart, P. R. and Allmaras, S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA-92-0439.
10Chan, W. M. and Steger, J. L., “Enhancements of a Three-Dimensional Hyperbolic Grid Generation Scheme,” Appl. Math.

and Comput., Vol. 51, 1992, pp. 181-205.
11Macke, M., Roos, D., and Riedel, J., “An Adaptive Response Surface Method Utilizing Error Estimates,” 8th ASCE

Specialty Conference on Probabilistic Mechanics and Structural Reliability, PMC2000-068, 24-16 July, 2000.
12Costa, M. C., Coulomb, J.-L., Marechal, Y., Dietrich, A. B., and Nabeta, S. I., “Diffuse-Element Method and Quadtrees:

Two “Ingredients” for an Adaptive Response Surface,” IEEE Transactions on Magnetics, Vol. 38, No. 2, Pt. 1, Mar. 2002,
pp. 1085-1088.

13Wang, G. G., “Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points,” J. Mech. Design,
Vol. 125, No. 2, Jun. 2003, pp. 210-220.

14Scheibe, T. D., Engel, D. W., Liebetrau, A. M., Jarman, K. D., Ferryman, T. A., and Didier, B. T., “Iterative Response
Surface Methods for Quantifying Uncertainty in Environmental Models,” PNNL-SA-41690, IDS-Water Americas, 2004.

15Han, D. and Chatterjee, A., “Adaptive Response Surface Modeling-based Method for Analog Circuit Sizing,” IEEE Proc.
SOC Conference, pp. 109-112, Sep. 2004.

16http://www.esteco.com/products.jsp .
17Nelder, J. A. and Mead, R., "A Simplex Method for Function Minimization," Comput. J. 7, 1965, pp. 308-313.
18Rigoni, E., “Bounded BFGS,” ESTECO TR 2003-007, ES.TEC.O S.r.l., Dec. 2003.
19Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P., "Optimization by Simulated Annealing," Science, 220, 4598, 1983,

pp. 671-680.
20Sasaki, D. and Obayashi, S., “Low-Boom Design Optimization for SST Canard-Wing-Fuselage Configuration,”

AIAA 2003-3432.
21Rigoni, E., “MOSA Multi-Objective Simulated Annealing,” ESTECO TR 2003-003, ES.TEC.O S.r.l., May 2003.
72Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T., “A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-

Objective Optimization: NSGA-II,” KanGAL Report 200001, Indian Institute of Technology, Kanpur, India, 2000.
23Schittkowski, K., “NLPQLP: A Fortran Implementation of a Sequential Quadratic Programming Algorithm with

Distributed and Non-monotone Line Search - User's Guide, Version 2.2,” Report, Department of Computer Science, University
of Bayreuth, 2006.

24Rechenberg, I., Evolutionsstrategie: Optimierung technischer Systeme und Prinzipien der biologischen Evolution ,
Frommann-Holzboog, Stuttgart, 1973.

25Schwefel, H.-P., Numerical Optimization of Computer Models , Wiley, Chichester, 1981.
27Hansen, N. and Ostermeier, A., “Completely Derandomized Self-Adaptation in Evolution Strategies,” Evolutionary

Computation, 9(2), 2001, pp. 159-195.
27Reisenthel, P. H. and Lesieutre, D. J., "Cumulative Metamodeling With Uncertainty Estimation: A New Approach to Risk-

Based Optimization of Aerospace Vehicles," NEAR TR 632, Nielsen Engineering & Research, Mountain View, CA, Jul. 2007.
28Moré, J. J. and Wild, S. M., “Benchmarking Derivative-Free Optimization Algorithms,” SIAM J. Optim., Vol. 20, No. 1,

pp. 172-191, 2009.

American Institute of Aeronautics and Astronautics
16

http://www.nearinc.com/index.cfm?fuseaction=page.display&page_id=147
http://www.nearinc.com/index.cfm?fuseaction=page.display&page_id=147
http://www.nearinc.com/index.cfm?fuseaction=page.display&page_id=147
http://www.nearinc.com/index.cfm?fuseaction=page.display&page_id=147
http://www.nearinc.com/index.cfm?fuseaction=page.display&page_id=147
http://www.nearinc.com/index.cfm?fuseaction=page.display&page_id=147

