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The aerodynamic design of an asymmetric oversized payload fairing subject to stability 
constraints was used as an example of a derivative-free, expensive black box function to 
benchmark the relative performance of  16 different optimization methods, ranging from 
gradient-based to simulated annealing and genetic algorithms/evolution strategies, including 
four methods with surrogate-based accelerators.  The focus of the present paper is on the 
practical attainability of getting an acceptable solution quickly.   The various algorithms are 
compared  using  performance  benchmarking  in  a  statistical  sense,  yielding  an  “efficient 
frontier”  with  special  emphasis  on  the  case  when  designers  are  confronted  with  small 
computational budgets.  

Nomenclature
argmax = argument of the maximum
CMO = cumulative metamodel optimization
Cm = pitching moment coefficient
DOE = design of experiment
E[.] = expected value
EI = expected improvement function
f = shape function
F = surrogate function
LHS = latin hypercube sampling
NL = nonlinear functional
OBJV = objective function value
p = probability
RBF = radial basis function
x,X = design variables vector
y,Y = expensive, true function
σ = standard error
^ = estimated
* = best real performer
<.> = average across realizations

I. Introduction / Motivation
upporting dynamic, complex/nonlinear, and multidisciplinary optimization tasks requires novel methodologies 
capable of assimilating data from disparate (heterogeneous) sources in a potentially high-dimensional parameter 

space.  Recent progress in cumulative metamodel technology, for example,  fast multidimensional nonparametric 
response  surface  technology,  has  suggested  improved  multidisciplinary  optimization  methodologies  capable  of 
combining  a  priori  mathematical  models,  numerical  predictions,  and  noisy  experimental  data.   Optimization 
methods  which  can  perform  robustly,  consistently,  and  economically  are  of  great  interest  to  engineering  and 
scientific  design in MDO applications.   The point  of  view adopted in  this  paper is  the following:  given finite 
computational resources and expensive function evaluations, it is critical that one selects the optimization method 
that is most likely to yield a satisfactory design with as few design evaluations as possible.  To this end, Cumulative 
Global Metamodels (CGM) have been proposed as an aid for conceptual design of highly integrated flight vehicle 
and air space concepts.1  These methods can be used with or without derivative information.  However, frequently, 
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single- and multidisciplinary analysis methods use expensive legacy codes that do not supply derivative information. 
Also,  the  results  of  high-fidelity  analyses  tend  to  be  noisy,  due  to  grid  dependence  and  convergence  issues. 
Therefore, the focus of the present paper is on derivative-free expensive “black box” optimization, specifically, the 
performance  benchmarking  of  such  methods  in  a  statistical  sense  when  the  user  is  confronted  with  a  fixed 
computational budget.  

The present paper is organized as follows.  Section II describes the surrogate-based optimization schemes used 
and, in particular, cumulative metamodel optimization (CMO).  Section III considers the relative performance of 
various  surrogate-based optimization  schemes  implementing  CMO using a  1-D tutorial.   An example  of  these 
methods is applied to an aerodynamic optimization problem, which is described in Section IV.  The results of the 
optimization are given in Section V and summarized and discussed in Section VI. 

II. Methods
It is well known that response surface-based surrogates can be used for automated searches and are naturally 

well-suited to the acceleration of optimization tasks2-4 and rapid strategy evaluation.  Given the specification of 
objectives  and  constraints,  the  basic  optimization  algorithm  (Fig. 1)  consists  typically of  the  following  steps: 
(1) initialization of metamodel parameters, (2) seeding of initial design space using design of experiments (DOE) 
methods, (3) metamodel/surrogate identification, (4) global search of current surrogate, (5) acquisition/evaluation of 
new data points (“infill” stage), (6) termination and/or model updates, and (7) determination of final solution quality. 

Figure 1.   Outline of metamodel-based optimization algorithm.

When choosing a metamodel type, one must consider a number of issues, including assumption requirements, 
the expected design landscape complexity (if known), and the time spent training or retraining the metamodel.  The 
optimization suitability of a given type of surrogate model is problem-dependent and is affected by factors such as 
the model's ability to fit complex local behavior, and the basic effort associated with the infill stage.  References 4 
and 5 provide excellent reviews of surrogate-based optimization which can be used to this effect.  

Surrogate model types range in complexity from polynomial regression and moving least squares to Kriging and 
support vector regression.  The approach used in this paper centers on the use of radial basis function (RBF) models, 
either fixed basis RBF or parametric RBF.  The choice of these models is motivated by their qualities in terms of 
modeling  ability,  flexibility,  generalization  properties,  and  the  significant  advantages  they  offer  in  terms  of 
performance.6  The RBF class of surrogates covers a wide range of methods, from simple fixed basis RBF, to fully 
parametric RBF approaching the complexity of Kriging.  Within this class, one can trade generality for performance, 
depending on which parameters are solved by optimization (parametric RBF) versus which parameters are fixed 
(simple  RBF).   In  this  paper,  we will  refer  to  two variants  of  these  methods:  (1) fixed  parameters  RBF,  and 
(2) quasi-parametric RBF, in which the metamodel parameters are automatically updated (Fig. 1, Step 3) throughout 
the optimization.  

A.  Radial Basis Function Model
In  N-dimensional  design  space,  the  sought-after  surrogate  is  a  function F :  RN → R which  is  constructed  by 

satisfying data constraints at P available data points.  If this response surface acts as an interpolant, then the function F 
must satisfy the constraints

F  X i = Y i , i = 1, , P       (1)

where each Xi is an N-dimensional vector containing the design variables and Yi the corresponding dependent variable. 
In the case where  F represents, instead, a regression model fit to the data, then the response surface is required to 
minimize in the least squares sense the distance ║F(Xi) – Yi ║, i = 1,...,M, M ≥ P.

In the radial basis function approach, the metamodel  F  is expanded into basis functions  Φk which are radially 
symmetric about their control point, Γk :  
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FX  =∑
k
ck k X , k , b k  k = f ∣∣X − k∣∣, b k        (2)

where f is a scalar shape function (for example, a Gaussian), bk is an adjustable scale or stiffness parameter, and ║.║ 
designates the Euclidean norm.  For example, if  f  is chosen to be a Gaussian: 

k X , b , bk  = exp−X − k 
T
 X −  k 

bk
2       (3)

With the additional assumptions that (a) the stiffness bk is uniform, and (b) the control points are chosen among the 
available data points, the linear model regression design matrix equation [A][c] = [Y] is given by:

[
f ∣∣X 1−X1∣∣ f ∣∣X1−X 2∣∣  f ∣∣X 1−X P∣∣
f ∣∣X 2−X1∣∣ f ∣∣X 2−X 2∣∣  f ∣∣X 2−X P∣∣

⋮ ⋮ ⋮ ⋮
f ∣∣XM−X1∣∣ f ∣∣XM−X 2∣∣  f ∣∣XM−X P∣∣

] .[
c1

c2

⋮
cP
]= [

Y 1

Y 2

⋮
YM

] (4)

In the case where uncertainty intervals for the Yi are available, and provided these intervals correspond to random 
uncorrelated noise (variance σ0

2), the variance of the surrogate prediction at point X is given by 

2 X  =  0
2 . X TAT A−1X  (6)

where Φ(X) = [Φ1 ,Φ2 ,...,ΦP ]T (see Ref. 1).  Although there are fundamental limitations to this kind of error modeling 
(since it pertains to repeatability errors), it will be used nonetheless to illustrate the use of the expected improvement 
function in the tutorial examples of Section III.  

B.  Objective Function
The examples discussed in this paper consider the unconstrained minimization of a computationally expensive 

function Y(X) over a simply connected domain D:  
minimize 

{ x1 , x 2 , , x N }
Y X 

subject to X ∈ D
(7)

A key aspect of the surrogate-based optimization process is the search (Fig. 1, Step 4) of the metamodel, since F(X) 
evaluations cost little in comparison to evaluations of the true computational function Y(X).  

Additionally,  in the case where an uncertainty model (e.g.,  (6)) is available,  it  is possible to make use of the 
expected improvement function (EI) traditionally used in Kriging.2  This function has shown considerable promise5 in 
terms of driving the optimization and being able to balance exploitation and exploration efficiently.   

Assuming a normally distributed error at point  X with standard error σ(X), and defining  X* as the current best 
solution, the expectation of improving upon F(X*) can be expressed analytically2 as

EI X  = E [max F X *−F X  ,0 ] =  F  X *−F  X   . F X *−F X  ,  X  
                    X . F X *−F X  ,  X  

(8)

where   is the probability density function

 y , =
1

 2
exp− y2

22        (9)

and   is the normal cumulative distribution function, 

 y , =
1
2 [1  erf  y

2 ]              (10)

Thus, Problem (7) is replaced by the following alternative problem involving the surrogate F and its standard error σ: 
maximize 

{ x1 , x 2 , , x N }
OBJV X

subject to X ∈ D
(11)

where the objective function value OBJV(X)  is either {EI(X)} if an uncertainty model σ(X) is available, or {-F(X)} 
otherwise.‡

‡ Note that, in the case where σ(X) is not available, using OBJV(X) = -F(X) is equivalent to using OBJV(X) = EI(X) 
with σ0 = 0.  Tests using infinitesimally small input variance (e.g., σ0 = 10-10) have been shown to produce virtually 
identical results, although using OBJV(X) = -F(X) is more computationally efficient.
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C.  Update/Infill Criterion
Problem (7) is solved by making use of a sequentially constructed radial  basis function surrogate  F(X).   The 

surrogate is initialized using a sparse design of experiment (Fig. 1, Step 2).  The metamodel search algorithm used in 
this study is a form of generalized pattern search4 which uses a gradient-free, multistart, steepest ascent, hill climbing 
algorithm to maximize the expected improvement.  At each iteration of the optimization, local optima resulting from 
the metamodel search are sorted based on objective function performance, and the top  m  virtual performers (Xi = 
argmax [OBJV], i = 1,...,m) are then used to spawn m real computational analyses Y(Xi = 1,...,m).  

These new computational analyses  augment  the RBF set of potential regressors  Φ k=1..,P as well as the set of 
potential constraints {X,Y(X)} i = 1,...,M.  In addition, the metamodel parameters bk can be dynamically adjusted based 
on cross-validation error minimization or other criteria.  The update stage (Fig. 1, Step 3) therefore results in solving a 
new linear system (4) for  F(X).  The results presented in this paper use  m = 1, corresponding to a standard, serial 
implementation of what Ref. 5 refers to as a “two-stage” infill. 

III. A One-Dimensional Example
Prior to describing the application of the above methods to an aerodynamic design function involving CFD of 

unusual configurations, it is useful to understand how the methods perform on a simpler, one-dimensional problem.   

A.  Choice of 1-D Function
The  data  used  in  the  problem  described  in 

Sections IV and V are obtained from Navier-Stokes 
CFD  computations.   Given  the  nature  of  the 
statistical  benchmarking  targeted  in  this  research, 
rather  than  making  CFD  calls  on  demand,  which 
would be prohibitively expensive, the present study 
is  made possible by interrogating an existing CFD 
database.   This  CFD  database  thus  represents  the 
expensive function Y(X).  

Because database evaluations are the result of an 
interpolation of CFD data, the one-dimensional test 
function  considered  here  is  based  on  the  same 
interpolation  scheme  as  the  one  used  in  the  CFD 
database (see Section IV).  By doing so, the function 
is not only useful as a tutorial, but is also representative of the problem considered in Section V.  The one-dimensional 
version of the expensive function, denoted  y(x),  is considered over the domain  D = [0,1] and is  the three-bucket 
function shown in Fig. 2.§   

B.  Cumulative Metamodel Optimization Variants
The methods described in Section II are referred to here as Cumulative Metamodel Optimization (CMO).   To 

better understand how the variants of the method may affect their probabilistic outcome, this section considers four 
different variations.  The first three are dependent on the existence of an uncertainty model.  The fourth represents the 
particular case in which no uncertainty is assumed and is analogous to the approach used in Section V.

Figure 3 compares  the  results  of  six  optimizations  representing  three  optimization strategies,  two uncertainty 
models, and three different sets of initial conditions.  Each row in Fig. 3 corresponds to a given optimization run.  For 
each run, four plots are shown.  The first three plots provide snapshots of the surrogate-based optimization as it 
progresses.  The first snapshot corresponds to the state of the optimization at the beginning of the first iteration, i.e.,  
after the DOE step and after the calculation of the initial metamodel (end of Step 3, Iteration 1 in Fig. 1).  Each design 
of experiment consists of only two points, which are selected based on a latin hypercube sampling strategy.  At the end 
of the 18th iteration, 20 function evaluations y(x) have been performed (two as part of the initial design, and 18 infills). 
The corresponding “late stage” portrait is shown as the third snapshot.  The second snapshot (labeled “intermediate 
stage”) corresponds to the optimization after anywhere from 4 to 9 iterations.  Each snapshot indicates the following: 
(a) the true function y(x), labeled “database” (black line), (b) prior function evaluations (whether infills or DOE, shown 
as □ symbols, (c) the current surrogate F(x) (solid blue line), (d) the uncertainty on the current surrogate, depicted as 
F(x) ± σ(x)  (dashed blue lines), and (e) the value of the expected improvement function (red line, log scale).  The 
fourth plot  in each row is a summary performance profile for the given optimization.  Each performance profile 
indicates the evolution of the best current minimum y* as a function of the total number of function evaluations, ni.  

§ Although not strictly identical, a good approximation of this function over the interval  x ∈ [0,1] is given by the 
polynomial  y(x) =  0.520558 – 0.07002374x – 24.1693x2 – 638.5461x3 +  7418.51x4 –  29340.51x5 +  57419.98x6 

– 60358.23x7 + 32720.3x8 – 7197.405x9. 
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Figure 3. Examples of Surrogate Optimization Strategies.



All six optimizations in Fig. 3 are expected improvement function driven, i.e., OBJV(x)= EI(x).  For the first three 
optimizations, a value of σ0 = 0.1 is assumed, while a value of σ0 = 10-10 is used in the last three optimizations to 
emulate, using the same method, the case where there is no uncertainty model available.  Cases 1 through 4 (Fig. 3) use 
the same DOE as initial conditions.  Cases 5 and 6 are repeats of Case 4 using different initial conditions.  All cases 
employ an RBF surrogate with regressors of the form 

k X , b , bk  =
1

 X −  k 
T
X −  k  − bk

2      (12)

For Cases 3-6, the  bk parameters are fixed from iteration to iteration.  By contrast, Cases 1 and 2 benefit from an 
adaptation algorithm which modifies the  bk  parameters from iteration to iteration (Fig. 1, step 3).

Cases 1 and 2 in  Fig. 3 differ by the uncertainty model they use.  While Cases 2 through 6 use the uncertainty 
propagation model (“uncertainty model #1”) described in Eq. (6), Case 1 simulates the case of an uncertainty model 
associated with computational experiments having zero uncertainty at the computed points but nonzero uncertainty 
inbetween (“uncertainty model #2”).  Such uncertainty intervals will result, for example, from variations between fully 
populated regression models which exactly interpolate all the data.¶  The result of each optimization iteration is the 
detection of x = argmax [EI] which is used as the next infill point before updating the metamodel using {x,y(x)}.   It 
can be seen from the last stage snapshot of Cases 1 and 2 that all minima of the function are found, and that the 
surrogate accurately approximates the underlying function.  Case 3 also detects all minima, but with a lesser global 
accuracy.   This  is  due  to  the  lack  of  adaptivity  of  this  variant,  which  has  two effects:  (1) less  exploration,  and 
(2) limited fitting ability.

Case 4 is identical to Case 3 except that Case 4 has no uncertainty model.  The late stage optimization snapshot 
shows a poor approximation of the underlying function for this set of initial conditions, and, accordingly, a solution that 
is trapped in a local minimum.  The outcomes of two alternative sets of initial conditions are shown as Cases 5 and 6. 
Case 5 optimization results in the solution being trapped in the same local optimum around  x = 0.675 and a poor 
quality surrogate.  Case 6 optimization, on the other hand, ends up finding the global minimum.  

C.  Ensemble Processing
The sample results shown in Fig. 3 (Cases 4 through 6) suggest 1:3 odds in favor of finding the global minimum 

when using a simple a simple pure-exploitation strategy.  The results of Cases 1 through 3 also suggest that a strategy 
which appropriately balances exploitation and exploration has the greatest probability of finding the global optimum. 
This is, of course, a well-established fact (see, e.g., Ref. 5), and the expected improvement function is designed to do 
so.  However, for OBJV(x)= EI(x) to be an effective driver, the uncertainty model/levels must be correct.

Too often, optimization methods are compared on the basis of a limited number of realizations.  In the case of 
surrogate-based optimization, there is a strong coupling between successive infills and the evolution of the surrogate. 
This is also true of the dependence on the initial DOE, especially in data starved situations.  While it is clear that a 
richer  DOE coverage  can  mitigate  the  dependence  on initial  conditions,  the  choice  of  a  two-point  DOE in one 
dimension is representative of data-starved situations, which occur with either large numbers of design variables, or 
limited resources, or both.

  

Figure 4. Comparison of optimization data profiles resulting from 100 realizations for three different 
strategies.  Left: pure exploitation with simple RBF.  Center: expected improvement function with 
simple RBF.  Right: expected improvement function with parametric RBF. 

To further clarify the relative performance of the methods shown in Fig. 3 , the results of Cases 2, 3, and 4 are each 
repeated 100 times using different initial design of experiments.  Each design of experiment corresponds to a two-point 
latin hypercube sampling, and the same 100 initial conditions are used in each case.  The corresponding aggregate of 

¶ approximated here using the artefact 2 X  =  0
2 .∣X TAT A−1 X  − 1∣ as an alternative to (6).
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individual  optimization  data  profiles  is  shown in  Fig. 4.   Although large  DOE-to-DOE variations  occur,  several 
observations can be made from the  raw data.  Knowing that the difference between the primary and secondary minima 
is Δ ≈ 0.11, it can be seen from the center plot, for example, that approximately 10% of realizations do not fall in the 
basin of attraction of the global optimum when using fixed RBF.  By contrast, all 100 realizations succeed in finding 
the global optimum region when using adaptive refinement (Fig. 4, right hand side plot).

Plots  such  as  those  shown  in  Fig. 4 can  be 
postprocessed  as  cumulative  distribution  functions 
corresponding to either vertical  or horizontal  “cuts” 
through  the  data.   Examples  are  shown  in  Figs. 5 
and 6.  Figure 5 compares the three optimizations of 
Fig. 4 in  terms  of  their  cumulative  probability 
distribution  function  after  18  iterations.   The 
cumulative  distribution  functions  indicate  the 
probability  p(y* ≤ y)  that  the  best  real  function 
evaluation  y* not exceed a given threshold value  y. 
The value of the threshold is shown on the abscissa, 
referenced to the value of the global minimum, yMIN. 
As  expected,  there  is  a  less  than  90%  probability 
p(y* ≤ Δ) of escaping the secondary minimum for the 
“expected  improvement,  RBF”  method.   Figure 5 
reveals that this probability drops to less than 65% if 
one  uses  an  exploitation-only  strategy.   It  is  also 
interesting to note that, for low values of the threshold 
(y - yMIN ≤ 10-2),  the  fixed  RBF methods  achieve  a 
higher probability of success.  

This  last  observation  is  confirmed  in  Fig. 6, 
which depicts the probability that y* - yMIN not exceed 
10-1 (solid lines) and 10-5 (dashed lines), respectively, 
as a function of the number of function calls.  The 
results  indicate  that,  while  the  “expected 
improvement, parametric RBF” method is thorough, 
in  terms  of  finding  the  correct  basin  of  attraction 
every time, there is a price to pay, in terms of how 
deep a minimum is found for the given number of 
iterations.  By contrast, the methods which spend less 
time exploring and, accordingly, more time exploiting 
(“expected  improvement,  RBF”  and  “exploitation, 
RBF”), are more likely to find a deep minimum, as 
exhibited by the p(y*- yMIN ≤ 10-5) results.  

In  other  words,  an adaptively refined,  expected 
improvement-driven method is a better approach for 
“degrossing” the problem, i.e., focussing the method 
on  the  right  area  of  the  design  space.   Although 
further research is required, the present results suggest 
that, once in the correct basin of attraction, a simple 
infill strategy may be most efficient. 

D.  Application to Aerodynamic Design
With a few exceptions (see Table 1), the “exploitation, RBF” method and example described above are the one-

dimensional analog of the problem considered in Section V.

Table 1.  Summary of differences between the optimization problems considered in Sections III and V.

Test Cases # variables (N) Design Functions RBF Surrogates Objective Function

Fig. 3, Cases 4-6 1 y(x) F[y(x)] OBJV = F

Section V 5 Cm1(X), Cm2(X) F1[Cm1(X)], F2[Cm2(X)] OBJV = NL(F1,F2)
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Figure 5.   Cumulative distribution functions after ni = 20 
function evaluations.

Figure 6. Probability of reaching the global optimum as a 
function of the number of function evaluations 
for two different objective function thresholds.



In Section V, ensemble processing similar to Figs. 5 and 6 is used to reduce the variability of optimization results when 
comparing between different methods.  

IV. CFD Database Background
In Ref. 7, the problem of designing a payload fairing large enough to encompass a spacecraft with an optical 

mirror  up  to  twice  the  diameter  of  an  expendable  launch vehicle  (EELV)  was  considered.   Optimization  and 
computational fluid dynamics (CFD) methods were used to design a nonaxisymmetric exterior shape for the fairing 
that meets specific aerodynamic design goals.  These aerodynamic goals include a balance of low lateral force on the 
fairing and smooth variations in that  force with respect  to angle of attack across a range of  Mach numbers  at 
transonic conditions.  In this application, the multiple design objectives are met by means of subsystem metamodels 
which are combined into a single performance index. 
 The  fairing  surface  is  defined principally  in  terms  of  analytical  functions.   The  cost  of  performing design 
optimization increases significantly with the number of independent design variables; therefore, it was important to 
minimize the number of control variables needed to parameterize the surface shape.  This is accomplished with an 
analytical surface shape definition, rather than a surface defined by discrete points.  Also, the approach seeks to 
impose the designer's understanding of aerodynamics on the optimization process, and to focus the design on shapes 
that trigger flow separation gradually, to alleviate excessive aerodynamic forces on the fairing.

  
Figure 7. Side and top views of payload fairing geometry. 

Three generations of the aerodynamic design were considered.  Only the first two are discussed here.  In the 
first-generation family of designs, the payload fairing geometry was initially parameterized using nine free design 
variables, corresponding to a two-dimensional (unswept) version of the ramp shown in  Fig. 7.  The nine control 
variables were the longitudinal minor axis and focus for the nose, the depths of the minor and major axes, three 
variables  controlling  the  height,  location,  and  slope  of  the  separation  trigger,  and  two  geometry  transition 
parameters.   A  main  outcome  of  optimizing  this  first-generation  family  of  designs  was  to  confirm that  flow 
separation was needed in order to achieve the aerodynamic goals.  The geometry of the second-generation family of 
designs is illustrated in Fig. 7, which shows side and top views of the three-dimensional payload fairing geometry, 
along with some of the geometric design parameters.  This fairing geometry was controlled by five independent 
variables, which were (1) the length of the elliptical section of the nose (in side view), (2) the location of the apex of 
the swept rearward-facing ramp (denoted “ramp leading edge” in the top view), (3) the ramp sweep angle, (4) the 
length of the backward-facing ramp (“chord” in top view), and (5) the height of the ramp. 

Because the flow around the payload fairing involves flow separation, a Navier-Stokes CFD solver (Overflow8) 
was used to predict the steady-state forces and moments on the launch vehicle.  The turbulence model used was the 
Spalart-Allmaras model.9  The active independent variables were used to automatically remesh the vehicle's surface 
and recompute a new volume grid using Hypgen.10  Grid convergence studies were conducted to determine the 
optimal grid resolution needed.  Using this grid resolution, individual CFD calculations took between two and six 
hours, depending on the rate of convergence, which itself depended on the flow physics of individual cases.

Multiple response surfaces (metamodels), each corresponding to one dependent variable, were combined into a 
single objective function on which the search was performed (see  Table 1).  The individual dependent variables 
were the overall pitching moments, Cm, at multiple aerodynamic conditions.  These multiple aerodynamic conditions 
were chosen to correspond to combinations of Mach number, angle of attack, and could potentially include roll 
angle.  

At Mach 1.0, it was found that the load Cm could be minimized relatively easily, to the point of zero load or even 
load reversal.  Such a condition, however, was the result of massive flow separation over the surface of the fairing 
and, consequently, tended to exhibit poor aerodynamic characteristics (i.e., a nonsmooth response with respect to 
angle of attack).  Another problem was that minimizing the load at Mach 1.0 (the nominal specification) frequently 
resulted in configurations that exhibited excessive loads at slightly supersonic Mach numbers, due to the reduced 
extent of flow separation in supersonic flow.  Both difficulties were addressed by carrying out the optimization 
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based on a measure of global aerodynamic performance,  rather than on a single load.  This measure of global 
aerodynamic performance was specified as an objective function designed to penalize the undesired behaviors.  This 
objective  function  (OBJV)  combined multiple  nonlinear  “bucket”  functions,  one  per  explicitly  optimized 
aerodynamic condition.  

One of the outcomes of this optimization process was the generation of 320 separate fairing configurations. 
These were used in the present study as the support data of a “black box” function, referred hereafter as “the CFD 
database.”  This CFD database is an approximate representation of the launch vehicle aerodynamics, which agrees 
exactly with the CFD at 320 points of the design space.  While the fidelity of this model is uncertain away from the 
support data, we expect it to hold reasonably well near the real CFD points.  It is important not to confuse the 
reference, fixed “CFD database” with the dynamic metamodel being updated during the course of the optimization 
(Fig. 1, Step 3).  

V. Benchmarking of Optimization Methods 
The present section begins with a summary of the goals and methods of surrogate-based optimization, followed 

by a description of the specific objectives of this study and the emphasis on positive outcome at finite resources 
rather than asymptotic convergence.  The optimization methods used in this study are then tabulated and the method 
used for their comparison is described.

A.  Introduction
In surrogate-based optimization approaches, the optimization is carried out on analytical surrogates in lieu of 

the  computational  analyses  themselves.   While  it  is  not  difficult  to  understand the  performance  advantages  of 
metamodel  optimization  when  the  surrogates  approximate  the  actual  problem  with  reasonable  accuracy,  an 
important  question  is  whether  this  has  any  practical  value  if  the  knowledge  of  the  design  space  is  sparse  or 
imprecise.  Indeed, an argument can be made that the knowledge of the design space is necessarily imprecise at the 
early stages of design, and that this lack of certainty is inherent to high-dimensional spaces, since they cannot be 
sufficiently  populated  a priori.   For  this  reason,  most  metamodel  optimization  approaches  include  a  critically 
important  last  step,  which  is  to  verify the  optimum  (i.e.,  characterize  the  neighborhood  around  the  presumed 
optimum using real analysis).  

Efficient  surrogate-based optimization  seeks  to  make use  of  the  limited  (and often  imprecise)  information 
contained in early and intermediate versions of the surrogate model.  The point of view adopted here is one where 
not  only  are  the computational  analyses  expensive  “black box”  function calls,  but  the computational  and time 
resources are limited by budgetary constraints.  It is desirable to make use of as few real computational analyses as 
possible in order to solve the optimum (or reach an acceptable optimum).  To do this, a metamodel surrogate must 
be formulated at the earliest stages of the design, typically from an initial (low-count) design of experiment (DOE).# 
This metamodel  is  searched,  and results  of  the search are then used to spawn one or  more real  computational 
analyses which provide the infill data used to update the surrogate.  

CMO can be described as an implementation of surrogate-based optimization based on a pruning-free fully-
populated regression model.  As such, the underlying metamodel is constantly updated using new real information, 
making it, in turn, more accurate.   The updated metamodel becomes the object of a new metamodel search, which 
in turn spawns new support data, and so on (see Fig. 1), until an acceptable optimum is reached (and, ultimately, 
verified).  The CMO approach is similar to other adaptive response surface approaches.  Every adaptive response 
model  is  based  on  two  elements:  (1) flexible  approximations  to  the  underlying  physics-based  model,  and 
(2) smart/efficient sampling methods.  The present sampling strategy is goal-driven, rather than primarily concerned 
with model accuracy (Refs. 11-14) per se.  Local (or even global) accuracy may result from the addition of support 
data in regions of interest, but it is not a necessary condition a priori (compare, for example, the late stage surrogates 
in Fig. 3).  The only thing that matters is that it improves the design, i.e., drives the design (real, not virtual) towards 
the goals expressed in the objective function formulated by the user.    

B.  Objective
While the idea that adaptive response surfaces can be used to accelerate the design process is not new,4,15 it is 

important to quantify the relative performance of optimization methods on problems other than “toy problems” such 
as  the  one  considered  in  Section III.   The  design  of  an  oversized  asymmetric  fairing  described  in  Section IV 
provides a viable target for benchmarking because it is a difficult problem relevant to the aerospace community and 
because it is computationally tractable, since the CFD database is itself a surrogate for Navier-Stokes calculations. 

An interesting aspect of the CMO method using radial basis functions is the occasionally erratic nature of the 
optimization  trajectories/data  profiles  (see  Fig 3).   In  our  experience,  the  approach  is  likely  to  cause  initial 
divergence,  resulting in an efficiency penalty which must be overcome.  In  other words, it  cannot be taken for 

# In the RBF method, the optimization can start with as little as one function evaluation. 
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granted that a net acceleration should always be achieved.  The fact that the dynamically updated metamodel will 
end up approximating the physics may be true, but only asymptotically, and provided there is sufficient coverage, 
which depends on the infill strategy.   The main focus of this paper is not on asymptotics (that number of CFD 
calculations  could  not  possibly  be  afforded!),  but,  instead,  concerns  the  practical  attainability  of  getting  an 
acceptable solution quickly.   

C.  Approach
To perform this benchmarking study, 16 optimization methods were applied to the aerodynamic design of a 

nonaxisymmetric payload fairing, as described in Section IV.  This test problem was chosen because of its suitable 
complexity and relevance to the aerospace community.  The salient characteristics of this problem are as follows:

• five independent variables controlling the shape of the fairing (see Fig. 7),
• two dependent variables (corresponding to the overall pitching moment at different Mach number 

and angle of attack combinations), treated as individual subsystems,
• nonaxisymmetric shock structure and three-dimensional flow separation and reattachment, resulting 

in highly nonlinear, highly sensitive responses for each subsystem,
• stability constraint enforced via nonlinear objective function (used to combine the two subsystem 

response surfaces into one figure of merit, see Table 1),
• global optimization problem (large number of local minima),
• encapsulated CFD model based on a database of 640 Navier-Stokes calculations.**

It is well-known that the suitability of one optimization method over another depends on the problem at hand. 
Therefore, a wide class of optimization methods (gradient-based, genetic algorithms, simulated annealing, evolution 
strategies)  were  examined,  with  the  goal  of  quantifying  their  relative  efficiency  on  this  problem.    This  was 
accomplished  by  exercising  the  optimization  methods  provided  within  the  modeFRONTIERTM software.16 

A summary of the optimization methods used in this study is provided in Table 2.

Table 2.  Summary of optimization methods.
Name Description

SIMPLEX Nelder & Mead Simplex algorithm for nonlinear optimization problems (Ref. 17).

B-BFGS Bounded Broyden-Fanno-Fletcher-Goldfarb-Shanno gradient algorithm (Ref. 18).

SA Simulated Annealing (Ref. 19).

MOGA-II Multi Objective Genetic Algorithm (Ref. 16).

ARMOGA Adaptive Range Multi-Objective Genetic Algorithm (Ref. 20).

MOSA 
(discrete)

Multi Objective Simulated Annealing, discrete design space (Ref. 21).

MOSA 
(continuous)

Multi Objective Simulated Annealing, continuous design space (Ref. 21).

MACK Multivariate Adaptive Crossvalidating Kriging (Ref. 16).

NSGA-II Non-dominated Sorting Genetic Algorithm II (Ref. 22).

FMOGA-II Fast Multi Objective Genetic Algorithm using internal response surface acceleration (Ref. 16).

FSIMPLEX Fast Simplex algorithm using internal response surface acceleration (Ref. 16).

NLPQLP Sequential Quadratic Programming solver (Ref. 23).

MMES Multimembered Multiobjective Evolution Strategy (Ref. 16).

DES Derandomized Evolution Strategy (Refs. 24-26).

1P1-ES (1+1)-Evolution Strategy (Refs. 24-25).

CMO-1 Cumulative Metamodel Optimization (Ref. 27).

Each  scheduler  in  modeFRONTIERTM consists  of  a  (DOE,  optimization  method)  pair.   Each  optimization 
method, whether gradient-, or population-, or evolutionary-based, uses an initial design-of-experiment table.  This 
initial DOE table provides either the initialization for the search path (e.g., SIMPLEX, B-BFGS, ∗SA, NLPQLP, 
CMO-1), or an initial population from which to evolve (e.g., ∗GA and ∗ES methods).  The same space-filling Latin 
Hypercube  Sampling  (LHS)  design method was  used as  the  DOE method for  all  of  the optimization methods 
investigated.  The number of LHS samples was kept fixed at 15 points.  For a given trial, the same 15 points were 
used  by all  methods.   Special  care was  taken to  export  the DOE table  to  make sure  that  the CMO-1 method 

** 320 configurations calculated at two different flow conditions
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(exercised outside modeFRONTIERTM) used exactly the same initial conditions as all other methods.  Regardless of 
optimization method, the querying of the CFD database was executed using a simple shell script.  

The  benchmarking  exercise  was  carried  out  on  a  single-objective  optimization  problem,  namely  the 
minimization of the objective function  OBJV referred to in Section IV.  The efficiency of the various methods is 
compared in the following manner.  During the optimization process, various regions of the design space are visited 
and the resulting design objective function values are stored in a design database.  Each design ID corresponds to 
one geometric configuration, which, in this study, corresponds to two CFD calculations (one per Mach number and 
angle of attack combination).  Since we are concerned with optimization using expensive computational analyses, 
the convention throughout this report is to equate the cost (time) of optimization with the number of design IDs, 
denoted Niter in the following figures.  Note that the function count is conservative, in the sense that, even in the 
case  of  optimization  methods that  use gradients  and for which the gradients  had to be approximated by finite 
differences, only the nominal design is counted.  And the same goes, of course, for any optimization that is assisted 
by an internal response surface accelerator, in which case only the real design IDs are counted; response surface or 
virtual ones are not.  

Thus, the ultimate metric in this study is 
the number of designs (real, not virtual) that 
need to be evaluated in  order  to  achieve a 
desired performance objective.  Specifically, 
we are  interested in comparing the various 
methods in terms of how many function calls 
are  required to  meet  the design  objectives. 
To do so, we keep track of the “current best” 
solution (i.e., minimum OBJV) at any given 
iteration  of  the  design.   Naturally,  this 
produces  a  monotonically  decreasing 
function exhibiting discrete steps each time a 
lower minimum is found.  As demonstrated 
in Section III, the location of these steps and 
how deep a minimum is reached depends not 
only on the optimization  method used,  but 
also  on  the  initial  DOE.   The  latter 
dependence  is  a  consequence  of  the 
multimodality of the problem being solved, 
i.e.,  the  existence  of  a  multiplicity of  local 
minima.   Due  to  this  multimodality,  a 
hypothetical “Method A” could be more efficient than another hypothetical “Method B” for a given initial DOE, but 
their  relative ranking could be reversed when initiating the calculations from a different initial  DOE.  For this 
reason, optimizations need to be carried out using repeated independent random trials (realizations), where each trial 
corresponds to one 15-point initial DOE.  To maximize statistical significance, 100 random trials were conducted, 
for  a  total  of  1,600  optimizations.   Scheduler  parameters  were  chosen  so  that  each  method  within 
modeFRONTIERTM would run for approximately 500 real designs (i.e., 500 CFD database queries).  An example of 
the raw optimization  results  data  for  the case  of  the MOGA-II  method  is  given  in Fig. 8 in  the form of  data 
profiles28 for 100 realizations of the min(OBJV) function versus the number of function calls.  

For each method, the stochastic results are processed in two ways.  The first consists of averaging the results of 
individual  realizations  of  min(OBJV),  yielding  a  smoother  representation  of  the  average  scenario.   While 
informative,  a  problem  of  this  representation  is  that,  since  the  underlying  probability  distributions  are  not 
symmetrical  about  the  mean,  the  average  can  be  misleading.   The  second  type  of  processing  computes  the 
probabilities of exceeding preset OBJV  thresholds based on the accumulated distribution histograms.

By construction, the OBJV values in the present application range from 20 (worst) to 0 (best).  It follows that 
values of OBJV below a threshold of 0.5 can be thought of as being associated with the top 2.5% performers in the 
design space.  Similarly, those below 0.2 represent the top 1% performers, and so on.    

D.  Results
Figure 9 summarizes the performance of all 16 optimization methods.  The results are presented in the form of 

(a) the average across realizations of  min(OBJV) (denoted <OBJV>, top graph),  and (b) the probability, denoted 
p(OBJV≤0.5), that min(OBJV) not exceed a 0.5 threshold value (bottom graph).  Both are plotted as a function of the 
number of designs/real function evaluations, Niter.
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Figure 8. Variability of min(OBJV) data profiles plotted as a 
function of the number of real function evaluations.



Figure 9. Comparison of mean of min(OBJV) and probability p(min(OBJV) ≤ 0.5) as a function 
of the number of designs.

Looking at the averages (Fig. 9, top graph), it is clear that some of the evolution strategies, along with methods 
such as SIMPLEX, FSIMPLEX, and MACK do rather poorly on this problem, at least within the first 500 design 
iterations.  The best performer amongst the standard methods initially is B-BFGS, which lowers <min(OBJV)> 
faster than any of the other methods early on, but stalls after approximately 120 iterations.  The reason for this is that 
further iterations only contribute to finding deeper (more precise) local minima, but do not improve the odds of 
finding better optima.  After approximately 150 iterations, ARMOGA dominates the other methods.  Specifically, 
<min(OBJV)> in ARMOGA reaches 0.1 in approximately 490 iterations.  By 500 iterations, the runner-ups (MOSA 
(discrete), MOGA-II,  NSGA-II,  MOSA (continuous), and FMOGA-II)  only reach between 0.17 and 0.25, while 
<min(OBJV)> for all other methods remains larger than 0.36.

In contrast to these methods, CMO-1 quickly drives <min(OBJV)> to low values,  reaching 0.08 before 100 
iterations (see Table 3).  It must be stressed that this comparison applies identical initial conditions for all methods, 
and that the initial conditions are those randomly generated within modeFRONTIERTM's DOE module.

Table 3.  Ranking of optimizers based on min(OBJV) performance at Niter = 500.

Name
<OBJV>

Niter = 50 Niter = 100 Niter = 200 Niter = 500

CMO-1 0.519 0.078 0.026 0.026

ARMOGA 0.835 0.566 0.339 0.098

MOSA (discrete) 1.023 0.851 0.564 0.172

MOGA-II 0.964 0.756 0.484 0.190

NSGA-II 1.105 0.797 0.400 0.221

MOSA (continuous) 1.010 0.861 0.594 0.229

FMOGA-II 0.899 0.637 0.383 0.243

SA 0.992 0.756 0.544 0.363

MMES 0.938 0.700 0.541 0.366

NLPQLP 1.014 0.678 0.419 0.394

B-BFGS 0.679 0.433 0.395 0.395
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Name
<OBJV>

Niter = 50 Niter = 100 Niter = 200 Niter = 500

MACK 1.106 1.000 0.867 0.494

FSIMPLEX 1.004 0.958 0.838 0.791

SIMPLEX 1.715 1.535 1.440 1.379

1P1-ES 5.205 4.779 4.651 4.569

DES 5.311 5.167 5.120 5.100

Another  way to  examine  the  results  is  to  consider  the  probability  of  reaching  our  objective,  expressed  by 
p(min(OBJV) ≤ threshold).   The lower plot  in  Fig. 9 depicts  this  probability for  an operational  threshold value 
of 0.5.   The  CMO-1 method  outperforms all  other  methods,  reaching  a  99% probability  of  success  within  93 
function calls on average (and 100% success in less than 110 function calls).  By comparison, at 100 iterations, the 
overall runner-up (B-BFGS) only has a 58% probability of success, with the next largest  probability of success 
obtained with ARMOGA, which gradually increases to 93% by Niter = 500.  All other methods perform worse on 
this problem.

The graph shown in the lower portion of Fig. 9 is a measure of systematic efficiency.  It does not necessarily say 
that a local objective function minimum of less than 0.5 cannot be reached, for example, by a gradient or simplex-
type method.  It simply says that these methods are less   likely   to do so.  Specifically, it quantifies how much less 
likely they are to do so than CMO.  Indeed, even a random sampling strategy is not immune to finding a low 
minimum; it is simply less likely to do so than a rational optimization method.  For reference, when sampling the 
design space randomly 50,000 times (the equivalent of 100 trials with 500 random numbers each), only 72 designs 
are found such that OBJV ≤ 0.5.  Similarly, a sampling of the design space using a 50,000-point Latin Hypercube 
DOE yields  73  acceptable  designs,  representing  a  less  than  0.15% probability  of  success.   Both  of  these  are 
indicated by the symbols in the lower right-hand corner of Fig. 9.  If one lowers the OBJV threshold from 0.5 to 0.1 
(from  top  2.5%  performers  to  top  0.5%  performers),  the  random  and  DOE  odds  of  success  decrease  further 
to 0.03%.  

It is noteworthy that this simple implementation of CMO represents at least a five-fold increase in efficiency 
factor over the best-performing standard method (ARMOGA), in the sense that a 90% probability of reaching the 
objective  is  achieved  in  1/5th the  number  of  evaluations.   Most  importantly,  as  the  threshold  decreases 
(corresponding to a more demanding objective), this efficiency factor grows further, as shown in Figs. 10 and 11 for 
threshold values of 0.2 and 0.1, respectively.  This trend towards further increased efficiency is consistent with the 
results of Han and Chatterjee.15

Figure 10.   Comparison of probability p(min(OBJV) ≤ 0.2) as a function of the number of designs.

A summary of the relative performance of each optimization method, ranked according to p(min(OBJV)≤0.2) at 
Niter = 500 is given in  Table 4.  Based on the results of  Figs. 9-11, it is clear that no single method dominates 
unconditionally.   Which  method  performs  best  statistically  for  a  given  number  of  iterations  depends  on  the 
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expectation or definition of “success.”  For example, in the unlikely event that “success” is defined as a greater than 
25%  probability  of  reaching  min(OBJV) ≤ 0.1,  then,  according  to  Fig. 11,  B-BFGS  dominates  (reaching  this 
likelihood in just 45 designs).  If, on the other hand, “success” is defined as a 99% or more probability of reaching 
the same threshold,  min(OBJV) ≤ 0.1,  then CMO - 1 is  the only  successful  method,†† reaching this  level  in  135 
designs.  

Figure 11.   Comparison of probability p(min(OBJV) ≤ 0.1) as a function of the number of designs.

Table 4.   Ranking of optimizers based on p(min(OBJV) ≤ 0.2) performance at Niter = 500.

Name
p(min(OBJV)≤0.2)

Niter = 50 Niter = 100 Niter = 200 Niter = 500

CMO-1 0.30 0.89 1.00 1.00

ARMOGA 0.05 0.24 0.57 0.90

NSGA-II 0.01 0.12 0.54 0.78

MOGA-II 0.04 0.09 0.27 0.76

MOSA (discrete) 0.01 0.05 0.17 0.74

FMOGA-II 0.03 0.18 0.57 0.73

MOSA (continuous) 0.02 0.06 0.16 0.66

B-BFGS 0.29 0.53 0.58 0.58

NLPQLP 0.11 0.36 0.54 0.55

MMES 0.05 0.14 0.32 0.55

SIMPLEX 0.14 0.36 0.45 0.53

SA 0.01 0.08 0.17 0.37

1P1-ES 0.05 0.15 0.30 0.37

DES 0.06 0.21 0.30 0.32

FSIMPLEX 0.12 0.16 0.18 0.23

MACK 0.01 0.03 0.06 0.22

Regardless  of  the  details  of  which  method  dominates  in  which Niter range,  what  is  important,  in  this 
“optimization of optimizations” is the fact that there exists an “efficient frontier.”  By definition, a point residing on 
the efficient frontier (seen as the envelope of the 15 standard method curves in  Figs. 9-11) is such that (a) for a 

†† (based on the maximum of  500 iterations used in this exercise)
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given  number  of  function  calls,  no  other  method  yields  a  higher  probability  of  success,  and  (b) for  a  given 
probability of success, all other methods require a greater number of iterations.  In other words, any point that is not 
on the efficient frontier is either riskier (lower probability of success) or costlier (higher number of function calls). 
It can be seen from the results of Figs. 9-11 that the present cumulative metamodel optimization method appreciably 
stretches the efficient frontier.  

Further,  accepting  de  facto that  response  surface  acceleration  techniques  are  a  given,  one  can  limit  the 
comparison  of  the  CMO-1  method  to  only  those  optimization  methods  that  use  an  internal  response  surface 
accelerator.  Three of the benchmarking methods examined in this study (MACK, FMOGA II, and FSIMPLEX) do 
so.  FMOGA II and FSIMPLEX use an internal adaptive response surface (Kriging) to speed up the search path, 
thus reducing the overall number of real designs (which are, again, the only ones being counted).  The MACK 
(Multivariate Adaptive Crossvalidating Kriging) method is different: its goal is to adaptively sample the design 
space where the interpolation is less accurate.  The comparison of CMO-1 to these three methods is  shown in 
Fig. 12.  

Figure 12. Objective function threshold-based performance comparison of four different response surface-
assisted optimization methods based on 100 random trials.  Left: p(min(OBJV) ≤ 0.5), center: 
p(min(OBJV) ≤ 0.2), right: p(min(OBJV) ≤ 0.1).

VI. Concluding Remarks / Discussion
The aerodynamic design of an asymmetric oversized payload fairing subject to stability constraints was used as 

an example of a derivative-free, expensive black box function to compare the relative performance of 16 different 
optimization methods.  The challenging multimodal nature of this optimization problem required examining the 
results in a statistical sense, using rigorous application of identical initial conditions for each optimization method, 
and a conservative count of function calls.  

The main result of the benchmarking study is a measure of systematic efficiency, quantifying how much more 
likely the cumulative metamodel optimization method is of reaching the design objective, compared to any of the 
other methods tested.  This includes methods which use an internal adaptive response surface (Kriging) to speed up 
the search path.  Specifically, an acceleration by at least a factor of five was found in terms of systematic efficiency, 
based on an “apples-to-apples,” comparison of optimization data profiles.  

As a cautionary note, several qualifiers are in order.  The first is the fact that the present study was performed 
with each method's default parameters.  It is possible, indeed likely, that fine-tuning the adjustable parameters of 
some  of  these  methods  would  change  their  ranking.   Second,  the  present  results,  while  thorough  in  a 
statistical/ensemble sense, are for one specific  application.   This application (the design of a large asymmetric 
fairing subject to stability constraints) presented specific challenges, such as severe nonlinearity and a multiplicity of 
local optima.  How well the CMO method will perform on different applications and test problems is a question that 
is left for future research.
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