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The integration of multidisciplinary data is key to supporting decisions during the 
development of aerospace products.  Multidimensional metamodels can now be 
automatically constructed using limited experimental or numerical data, including data 
from heterogeneous sources.  Recent progress in multidimensional response surface 
technology, for example, provides the ability to interpolate between sparse data points in a 
multidimensional parameter space.  These analytical representations act as surrogates that 
are based on and complement higher fidelity models and/or experiments.  These high-level 
representations or metamodels can include technical data from multiple fidelity levels and 
multiple disciplines, but also nontechnical data such as costs and schedules.  Most 
importantly, these representations can be constructed on-the-fly and are cumulatively 
enriched as more data become available.  The purpose of the present paper is to highlight 
applications of these Cumulative Global Metamodels (CGM), their ease of construction, and 
the role they can play in aerospace integration.  This paper focuses on two types of 
applications, namely, design optimization and mutual data set enrichment via data fusion. 

I. Nomenclature 
CD = drag force coefficient 
Cm  = pitching moment about center of gravity 
CR  = radial force coefficient 
M = Mach number 
rc = canopy radius 
ref = reference value 
α = angle of attack 
φ = roll angle 
θc = total canopy angle 
θr = canopy reference angle 
σ = standard deviation 

II. Background 
L
s

OBAL metamodels and response surface technology are increasing used in a variety of fields, including 
tructural reliability, instrument calibration, and aerodynamic and trajectory optimization, to name a few.1-11  

Because of their analytical nature, these models can be used for automated searches and are naturally well-suited to 
the acceleration of optimization tasks and rapid strategy evaluation.  A central issue to constructing appropriate 
response surface models is the so-called curse of dimensionality, in which the number of data points required to 
characterize/support the surface increases exponentially with the number of independent variables.  This difficulty is 
well-known and, in effect, precludes the use of conventional schemes, such as polynomial and piecewise-polynomial 
(finite-element) approximations.  Neural networks, support vector machines, and multidimensional splines all have 
proven capable of multidimensional data generalization and (partially) circumventing this difficulty.  The particular 
approach used in this paper is based on self-training radial basis function networks which form the basis of the 
NEAR-RS (response surface) technology. 
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 NEAR-RS is a software system consisting of two modules: a metamodel (response surface) identification 
module, and a metamodel evaluation/interrogation module.  A graphical user interface included in this second 
module serves as a multidimensional viewer, which facilitates the visualization of trends in high-dimensional data.12  

A key aspect of the technology is the ability to estimate further sampling needs and model quality, based on 
uncertainty estimation.   
 Four distinct applications illustrating the use of these methods are discussed in this paper.  The first three are 
based on ongoing projects and illustrate the data adaptivity, data fusion, and feature extraction/data mining 
capabilities of the method.  The last application presents an example of the uncertainty modeling capabilities of 
CGMs. 

III. Refueling Drogue Canopy Design 
Rapid optimization through multidimensional surrogate modeling was used in a recent effort at Nielsen 

Engineering & Research involving the redesign of a refueling drogue canopy.  Figure 1 depicts a standard C-130 
high-speed drogue during a wind-tunnel test (flow is from left to right).  The picture shows the end of the refueling 
hose, connected through a ball joint to the MA-3 coupling, to which the strut arms of the canopy are attached.  The 
inflated canopy provides the appropriate drag force to both stabilize the hose-and-drogue assembly and maintain the 
hose at the proper angle for refueling operations. 

A. Objective and Methods 
For a given air speed, the design objective is to maximize the radial force on the canopy, while maintaining the 

drag within a narrow prescribed range.  The canopy shape is modeled as a first approximation as being 
axisymmetric.  The four geometric design parameters (see Fig. 2) are: the canopy radius, rc , the reference angle, θr , 
the vent angle, θv , and the total arc, θc .  These four parameters define a family of canopy shapes with a common 
downstream strut arm attachment point. 
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 Figure 1.   Standard C-130 refueling drogue. Figure 2.  Canopy geometric parameter definition. 
 
 The aerodynamic performance of the inflated canopies was estimated using Sandia National Laboratory's 
VPARA code.13  VPARA predicts the axisymmetric flow field over rigid bluff bodies such as thin shells, and has 
been used to estimate the drag and radial force produced by canopies of a fixed shape.  The solution method is based 
on the axisymmetric vorticity transport equation, where discrete ring vortices are generated at the body, satisfying 
the appropriate surface boundary conditions.  These vortices are subsequently diffused and convected into the 
boundary layers and the wake of the body, while new vortices are generated at the body surface.  VPARA was used 
to compute time histories of the pressure distributions and the forces on the modeled surfaces.  Estimates of the 
mean drag and radial force coefficients were obtained by averaging the instantaneous loads over a portion of the 
total time history.  As an example, Fig. 3 depicts the location of the shed vortices after a nondimensional convective 
time of 240.   
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 Figure 3.  Canopy wake cross-section calculated using VPARA. 

B. Optimization  
For this design problem, there are four independent variables (the four geometric parameters defined in Fig. 2), 

and two dependent variables, CD and CR.  From a known reference condition (corresponding to an existing drogue), 
the design space was seeded with the results of 12 additional VPARA calculations.  Using these 13 initial 
configurations, four-dimensional response surfaces were constructed for CD and CR.   

As previously mentioned, the objective was to maximize CR , subject to CD  being confined to a narrow range of 
allowable values.  Thus, the CD and CR  response surfaces were combined into a single objective function, defining a 
new, highly nonlinear hypersurface.  A thorough, global search of this hypersurface was then conducted through 
repeated interrogations of this surrogate model.  The result of the search is a hierarchy of maxima which can then be 
investigated through further VPARA calculations.   

After collecting a suitable number of additional calculations, new response surfaces are formed for CD and CR.  
In this manner, the resulting, updated hypersurface is cumulatively enriched with the addition of each new data 
point.  An illustration of this process is shown in Fig. 4.  Figure 4 shows the response surface of the radial force 
coefficient at various stages of the design iteration process.  The surfaces are two-parameter projections of the 
hypersurface, i.e., rc and θc are kept at fixed values (not necessarily corresponding to an optimum), for illustration 
purposes.  The results of actual VPARA calculations for this same projection are indicated using triangular symbols.  
An indication of the corresponding drag coefficient response surface is also given through coloring.  Figures 4(a), 
(b), (c) and (d) correspond to response surfaces formed after 29, 44, 95, and 136 calculations, respectively.  Each 
figure is an instantaneous snapshot of a continuous parameter space representation, based on the available data.   

An assessment of the performance of the optimization method is given in Fig. 5.  Two curves are shown.  Both 
represent the maximum radial force coefficient versus iteration number.  At a given iteration, the bottom (red) curve 
represents the current best design based on the VPARA computations carried out to that point.  By contrast, the top 
(green) curve at the same iteration number represents the new suggested optimum, based on a response surface 
computed using all the available data.  Asymptotically, these two curves should converge.  The purpose of the figure 
is not to show convergence, however, but to document the process actually used during the optimization, as well as 
to furnish insight into how the method works.   For this purpose, next to these performance metric curves (maximum 
CR , conditional to CD  = 1.0) is an indication of the independent variables for which this performance is achieved.  
The magnitudes of the independent (geometry definition) variables are shown in the form of radial histograms or 
“radiograms,” for short.  Each radiogram shows four vectors at 90-degree angles, corresponding (clockwise from 
top) to: rc , θr , θv , and θc .  In these graphs, the minimum and maximum length of each vector has been rescaled 
from 0 to 1 for convenience.  Also, a blue line connecting the ends of the vectors is added to enhance the visual 
perception.  Using these radiograms, one can visualize on the same plot as the performance curves (a) the evolution 
of the actual design (red vectors), in terms of the geometric parameters, and (b) the parameters corresponding to the 
current suggested maximum (green vectors), based on the response surface. 
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Figure 4.  Radial force response surface evolution as a function of cumulative data set enrichment. 
 
In the early stages of design, the response surface is more erratic and tends to point the design in new directions 

which may or may not be fruitful ultimately, as more real data are collected.  The addition of these new data points  
enriches the response surface, which becomes more realistic and more accurate in the process.  Also, rather than a 
systematic convergence study, the graph of Fig. 5 is a faithful documentation of the design process used.  During the 
course of this design, the parameter space underwent several expansions, i.e., redefinitions of the parameter 
boundaries by the designer.  Each time this happened, the current response surface pointed to new, extrapolative 
extrema (as high as 4.1).  But, as the data set was subsequently enriched, this would be followed by a period of 
relaxation back to a more realistic maximum.  Aside from parameter expansions, there were also changes in strategy 
throughout the process.  For example, in the early phases, the designer chose to follow the suggestions made by the 
response surface optimizer (i.e., to investigate the response surface maximum).  Later, the designer chose to perform 
calculations at some of the “corners” of the parameter space, to get a better overall representation the response 
surface.  Later still, the designer was satisfied that the calculated optimum met the desired specifications, and was 
more interested in populating the design space near this optimum, in order to better understand the local shape of the 
response, such as the width of the allowable region, and whether there were any “dangerous” sensitivities to stay 
away from.  In the final stages, the designer chose to investigate suboptimal maxima, essentially optimizing in 
subranges of the canopy radius.  This was done with the goal of fabricating and wind-tunnel testing several different 
canopies, providing a smooth path from the existing, reference canopy to the (very different) optimized canopy.  
Regardless of the strategy used, the response surface's accuracy continues to be cumulatively enhanced as more data 
become available.   
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Figure 5. Design evolution as  a function of response surface iteration. 

 
Careful scrutiny of Fig. 5 also shows that this was not a mere gradient search, and that, indeed, significantly 

different directions and regions of the parameter space were investigated as a result of the surrogate model based 
optimization.  Most importantly, the continuous and analytical description provided by the response surface is well-
suited to rapid global search strategies, since interrogations of the surrogate model are many orders of magnitude 
faster than the individual data calculations, a fact that the authors took advantage of, giving a high degree of 
confidence that the parameter space was searched thoroughly.   
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This gain in performance is illustrated in Fig. 6,  which shows the cumulative number of surrogate (metamodel) 

evaluations, compared to the cumulative number of VPARA calculations needed to achieve the final design, a net 
three-and-a-half order of magnitude gain. 

IV. Large Asymmetric Launch Vehicle Payload Fairing Design 
 A second application involving sequential optimization concerns the aerodynamic and structural design of a 
payload fairing large enough to encompass a spacecraft with an optical mirror up to twice the diameter of an 
Evolved Expendable Launch Vehicle (EELV).14 

 
A.  Objective and Methods 
 The principle design objectives at the early stages of this work were related to stability and control, as well as the 
mass of the fairing.  Optimization and computational fluid dynamics (CFD) methods were used to design an 
asymmetric exterior shape for the fairing that meets specific aerodynamic design goals.  These aerodynamic goals 
include a balance of a low lateral force on the fairing and smooth variations in that force with respect to angle of 
attack, across a range of Mach numbers near M = 1. 
 The fairing surface was defined principally in terms of analytical functions.  The cost to perform design 
optimization increases significantly with the number of independent design variables; therefore, it is important to 
minimize the number of variables needed to parameterize the surface shape.  This can be accomplished with the 
analytical surface shape definition, rather than a surface defined by discrete points.  Also, the approach sought to 
impose the designer's understanding of aerodynamics on the optimization process, and to focus the design on shapes 
that would trigger flow separation gradually to alleviate excessive aerodynamic forces on the fairing. 
 Because the flow around the payload fairing involves separation, a Reynolds-averaged Navier-Stokes CFD 
methodology (Overflow15) was used to predict the steady-state forces and moments on the launch vehicle.  The 
payload fairing geometry was initially parameterized using nine free design variables, but three of those were found 
to have minimal effect on performance and were, consequently, set to fixed values.  The remaining six active 
independent variables were used to automatically remesh the surface and recompute a new volume grid using 
Gridgen.  Grid convergence studies were conducted to determine the optimal grid resolution needed.  Using this grid 
resolution, the CFD calculation took between two and six hours, depending on the requested convergence level. 
 
B.  Optimization 
 The approach used was similar to the one described in Section III.  A global optimization scheme is applied to a 
continuous, analytical surrogate, rather than the CFD calculations themselves.  This allows a thorough search of the 
solution space without the cost of performing actual CFD solutions.  Naturally, the approach relies on the response 
surface being representative of the design space, which may not be the case, particularly at the early stages of the 
design.  Nevertheless, and as demonstrated through the previous example and this one, the procedure appears to 
yield solutions satisfying the problem constraints in a relatively small number of CFD calculations. 
 Similar to the example of Section III, multiple dependent variables were combined into a single objective 
function.  The dependent variables were the overall pitching moment, Cm , at multiple aerodynamic conditions 
(M,α,φ).  The six-dimensional independent variables parameter space was initially seeded using Latin hypercube 
sampling16 (LHS) design-of-experiments methods.  The results of these initial calculations were used to form the 
first generation of response surfaces (one for each aerodynamic condition).  A global search of the objective 
function over the response surfaces would then “suggest” the next set of CFD runs.  A mixed strategy was used to 
enrich the data set (i.e., compute further CFD solutions).  As in Section III, in the early stages of design, the strategy 
involved successive waves of parameter expansion, followed by periods of populating the data set.  Each generation 
of new CFD calculations used LHS randomization for the independent variables, running 10 to 16 solutions at a time 
on a cluster of Linux workstations.  By contrast, the intermediate and later stages of the design were characterized 
by a focusing of the parameter space on the most promising regions, at a given iteration of the design.  Note that 
these regions of interest did not always remain the most promising one, as further CFD calculations would either 
confirm or invalidate the trend predicted by the response surface at the previous iteration. 
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Figure 7. Rapid multiobjective optimization using cumulatively enhanced metamodel. 

 
 Figure 7 shows the result of the optimization procedure.  In this example, the various symbols are associated 
with successive generations of CFD data points harvested in the process.  Each data point generation is the result of 
an exhaustive “scatter and poll” search strategy on the global metamodel constructed as a result of the design's 
previous iteration.  Therefore, the metamodel is enhanced at each generation by the new knowledge provided by the 
results of the latest CFD runs.  In this case, the objective was to reduce the coefficient Cm to less than twice some 
reference coefficient Cm,ref for two distinct aerodynamic conditions, aero1 and aero2, which are combinations of 
different (M,α) pairs near M = 1.   Thus, any point such that (Cm  / Cm,ref )aero1 < 2.0 and (Cm / Cm,ref )aero2 < 2.0 
(i.e., inside the dashed line in Fig. 7) is an acceptable aerodynamic design.  The main point of this figure is that, after 
just 10 generations (less than 230 CFD runs), a large number of acceptable designs were found, guided by the 
cumulatively enhanced metamodel.  This rather small number of CFD runs (for a six-dimensional parameter space) 
is to be contrasted with the total number of metamodel interrogations used to drive the optimization, which is on the 
order of 3 million. 

V. Mutual Enhancement of Data Sets 
Global metamodels can be used to perform data fusion operations to enhance the usefulness of limited 

experimental data.  The problem is akin to interpolating and extrapolating the data outside of the range where these 
data were collected, a task which, without any regularizing assumptions, constitutes a fundamentally ill-posed 
problem.17  Regularizing assumptions can come in various forms: physics based models, mathematical equations 
(such as splines), implicit smoothness assumptions, or other empiricisms.  The method used here employs a 
particular form of regularization, in which a hypersurface going through the experimental data is “supported” by 
additional computational constraints.  The calculation of this hypersurface uses the same technology as previously 
described in Section II and the applications of Sections III and IV. 

 
A. Correction of Aerodynamic Databases Using Experimental Data 

The fusion of wind-tunnel data with aerodynamic databases is considered next.  The goal is to assimilate wind-
tunnel data for use in flight simulations.  The example shown below corresponds to a generic body-tail configuration 
(not shown).  This application merges two data sets: an experimental (wind tunnel) data set, and a computational 
data set.  These data are used to create a hypersurface metamodel.  The data point inputs to the hypersurface 
calculation are referred to as the support vectors of the surface.   The “computational” support vectors are supplied 
by the MISL3 code.18  This MISL3 database consists of forces and moments predictions for a wide range of angles 
of attack, roll angles, and Mach numbers in the subsonic, transonic, and supersonic range.  The experimental support 
vectors are supplied by a wind tunnel test for a much smaller range of conditions consisting of three Mach numbers, 
four roll angles, and a subset of the angle-of-attack range.  The goal was to produce an “error database,” defined as 
the difference between a fit to the MISL3 database and a fit to the experimental data.  The fits were obtained by 
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constructing a low-order analytic (smoothly varying) four-dimensional response surface generated using 
simultaneously the MISL3 support vectors (in one “plane” of the parameter space), and the experimental support 
vectors (in a separate “plane” of the parameter space).  The error database can then be used to “correct” the MISL3 
database to take into account the experimental measurements.  Conversely, this method is a way of constructing 
smart interpolation and extrapolation schemes in cases where limited quantities of data are available.  From a user 
perspective, this process is automatic and does not require the specification of any equations.  Only support vectors 
from alternate sources of data are needed.  In this case (see Fig. 8), there is a very specific shape to the extrapolation 
in angle of attack and roll angle.  This shape is “inherited” from the MISL3 database. 

 

  
Figure 8. MISL3 and experimental side force (rolled coordinate system) and rolling moment predictions. 

 
B.  Alternate Uses 
 In a completely different application (not shown), NEAR has used this method to improve pressure drag 
predictions based on the fusion of high-resolution CFD calculations with limited pressure tap measurements in a 
wind-tunnel test. 
 It is argued that the technique outlined above is quite general and can be used, either to “fill-in” where limited 
quantities of experimental data are available, or to “fine tune” the results of computational analyses using the limited 
data available.    

VI. Uncertainty Prediction 
 As previously mentioned, a key aspect of the technology is the ability to estimate further sampling needs and  
estimate the response surface quality, based on uncertainty estimation.  The uncertainty estimation in NEAR-RS is 
based on propagating statistical descriptions of uncertainty in measurements or input data to estimates of uncertainty 
in the response surface coefficients themselves.  This approach makes use of the covariance of the output 
measurements and is based on the theory of best linear unbiased estimation.   
 By way of illustration, an example of response surface with uncertainty estimation is given in Fig. 9, for a model 
of the aerodynamic performance of an X-38-type forebody configuration as a function of Mach number and pitch 
angle upon atmospheric reentry.  The X-38 data set consists of Euler CFD computations carried out by NASA 
Ames, and was used as a test case in the development of CFDExchange,12 a system for the automated archival, 
search, and results retrieval of CFD solutions, using a relational database.  In this system, the retrieved CFD 
solutions are considered as points in a multidimensional space.  In the present case, the solution space is 
parameterized by Mach number, pitch angle, grid resolution, and solution algorithm settings.   
 The response surface shown in Fig. 9 is for given resolution and algorithm settings.  The CFD points for these 
conditions are the only inputs to the response surface calculation, and are indicated in the figure in the form of 
triangular symbols.  Although the data points are clustered only around the nominal trajectory parameters, the 
resulting surface is analytical and exists everywhere in space, including outside the intended X-38 reentry trajectory.  
The uncertainty prediction is indicated by the coloring of the response surface.  For this calculation, a uniform 
uncertainty of 10-4 was assumed for each data point.  Note the large amplification of the prediction uncertainty away 
from the data points.   
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 It has been previously suggested12 that, in cases where the goal is to characterize the overall response surface 
within an acceptable uncertainty bound, the uncertainty prediction can be used to guide the further population of the 
parameter space, for example, by “placing” further runs/cases in areas of highest uncertainty.  In other applications, 
advanced optimization and design-of-experiments strategies that make efficient use of this predicted uncertainty are 
currently under development at NEAR. 

 
Figure 9.   Uncertainty modeling for X-38 reentry. 

VII. Conclusion 
Cumulative global metamodels (1) allow data structure flexibility and the use of heterogeneous data sets, 

(2) provide a fully analytic, mathematical description that can be easily manipulated and shared between aerospace 
customers, and (3) have a rational basis for propagating uncertainty estimates, making these models suitable for risk 
assessment.  Metamodel uncertainty can be used as a driver for decision making or in further populating data sets. 
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