Cumulative Global Metamodels with Uncertainty: A Tool for Aerospace Integration

Patrick H. Reisenthel, John F. Love, Daniel J. Lesieutre, and Robert E. Childs

Nielsen Engineering & Research, Inc., Mountain View, CA 94043, USA

1st International Conference on Innovation and Integration in Aerospace Sciences, 4-5 August 2005, Queen’s University Belfast, Northern Ireland, UK
Introduction / Motivation

• Aerospace products require integration of multidisciplinary data
• Need for high-level representation based on
 – Limited experimental or numerical data
 – Data from heterogeneous sources
• Multidimensional response surface technology
 – Can handle
 • Multiple fidelity levels
 • Multiple disciplines
 • Technical and nontechnical data
 – Characteristics:
 • Analytical representation
 • Constructed on-the-fly
 • Cumulatively enriched
 – Applications:
 • Design optimization
 • Mutual data set enrichment via data fusion
Background

• Response surface (RS) technology
 – increasingly used:
 • Structural reliability
 • Instrument calibration
 • Aerodynamic and trajectory optimization
 – well-suited for
 • Automated searches
 • Acceleration of optimization tasks, rapid strategy evaluation

• Curse of dimensionality
 – Precludes
 • Polynomial, finite-element approximations
 – Candidates:
 • Neural networks
 • Support vector machines
 • Multidimensional splines
 • Self-training radial basis function networks (NEAR RS)
NEAR RS

• Two modules
 – Metamodel (response surface) identification
 – Metamodel evaluation/interrogation
 • Graphical user interface / multidimensional viewer

• Ability to estimate further sampling needs / model quality
 – Uncertainty estimation
Four Examples

• Design optimization
 – Refueling drogue canopy
 – Large asymmetric launch vehicle payload fairing

• Mutual enhancement of data sets
 – Correction of aerodynamic data base using experimental data

• Uncertainty prediction
 – X-38 forebody aerodynamics

➡️ Significant acceleration of optimization tasks
 – CFD usable in preliminary design

➡️ Data fusion
Refueling Drogue Canopy Design

Standard C-130 refueling drogue

Geometric parameters
Canopy Optimization

• 4 independent variables (θ_r, r_c, θ_c, θ_v), 2 dependent variables (C_R, C_D)
• Constraints via objective function specification
• Procedure:
 – Seed the design space / Design of Experiments
 – Response surfaces identification
 – Global search
 – Add new points to the design space
 • Allow for dynamic strategy
 – Stop criterion
Radial Force Response Surface Evolution
Canopy Design Evolution

Max. Radial Force Coefficient at $C_D = 1$

Parameter expansion

Data set enrichment

Detailed design

Surrogate = driver

Response Surface Iteration Number

Actual (Computation)

Suggested (RS)
Performance Gain

- **Response Surface Iteration Number**
- **Number of Evaluations**

Metamodel (RS) Direct Search

RS savings

Actual Computations

- **$$$$$$**
- **$$**

NIELSEN ENGINEERING & RESEARCH, INC.
Large Asymmetric Launch Vehicle Payload Fairing Design

- Aerodynamic and structural design of payload fairing
 - Spacecraft with optical mirror up to twice the diameter of an EELV
- Reference vehicle: Boeing Delta 4 Heavy
Aerodynamic Design

• Preliminary design goals
 – Stability and control
 – Mass

• Methods
 – Optimization
 – Computational Fluid Dynamics

• Aerodynamic objectives
 – Low lateral force (C_m)
 – Smooth variation with respect to angle of attack near Mach 1.0
Payload Fairing Optimization

- 9 independent variables (6 active for parameterization of shape), up to 4 dependent variables $C_{m}(\alpha_{i},M_{i})_{i=1..4} \equiv C_{m,i}$

- Objective function specification $= F(C_{m,1}, C_{m,2}, C_{m,3}, C_{m,4})$

- Procedure:
 - Seed the design space / Design of Experiments $\$$
 - Response surfaces identification $\$
 - Global search $\$
 - Add new points to the design space (strategy)
 - Automatic remeshing / Overflow / Postprocessing $\$$
 - Stop criterion $\$
 - Verification $\$

NIELSEN ENGINEERING & RESEARCH, INC.
Multipoint Fairing Optimization

![Diagram of multipoint fairing optimization with data points and parameters listed in a table]

- **# parameters** | **$$ savings**
 - 4 | $$10^{3.5}$$
 - 6 | $$10^{4.1}$$
 - ... | ...

- 230 CFD runs
- 3 x 10^6 RS evaluations
Mutual Enhancement of Data Sets

• Global metamodels can be used to
 – perform data fusion operations
 – enhance the usefulness of limited experimental data

• Interpolation / Extrapolation / Data generalization
 – ill-posed problem
 – regularizing assumptions
 • physics based models
 • mathematical equations
 • smoothness assumptions
 • empiricism
 • hypersurface
 – going through the experimental data
 – “supported” by additional computational constraints
Correction of Aerodynamic Databases Using Experimental Data

• Wind-tunnel data assimilation for use in flight simulations
• Generic body-tail configuration
• Two data sets
 • experimental (wind tunnel) data
 • “computational” data (MISL3 database)
 – Forces and moments
 – Wide range of angles of attack, roll angles, and Mach numbers
• “Error database”
Error database

• Defined as difference between two fits
 • Four-dimensional
 • Analytic (smoothly varying)
Error database

- Used to “correct” MISP3 database
 - Takes into account experimental measurements
- Smart interpolation/extrapolation
 - Process is automatic
 - No equations specified
Wind Tunnel Data Enhancement of MISL3 Database

Side Force

Rolling Moment
Uncertainty Prediction in NEAR RS

- Uncertainty estimation based on propagating statistical descriptions of uncertainty in measurements (input data) to uncertainty in the response surface coefficients.

- Approach
 - uses the covariance of the output measurements
 - based on theory of best linear unbiased estimation
Uncertainty Modeling (X-38 Reentry)

- 3D Euler solutions (NASA Ames)
- Each CFD solution = 1 point in multidimensional space
- Solution space parameterized by
 - Mach number
 - pitch angle
 - grid resolution
 - algorithm
Uncertainty Modeling (X-38 Reentry)
Cumulative Global Metamodels: Conclusion

• Significant cost savings in design optimization tasks

• Fully analytic, mathematical description
 – easily manipulated and shared
 – Data structure flexibility / use of heterogeneous data sets

• Rational basis for propagating uncertainty estimates
 – suitable for risk assessment

• Metamodel uncertainty can be used as a driver for decision making, further populating data sets.
Questions?