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ABSTRACT Subscripts

A nonlinear indicial prediction model was developed dyn Dynamic
to predict the unsteady aerodynamic response max Maximum
associated with maneuvering flight vehicles at high qs Quasi-static
angles of attack.  The model is based on nonlinear ∞ Time-asymptotic value (except for U )
indicial response theory and key simplifications
thereof using functional interpolation of parameterized Superscripts
responses.  This paper presents the initial development " Derivative with respect to time
of the method and its application to a model problem "" Second derivative with respect to time
involving the "Cobra" maneuver by a full-scale fighter ~ Indicial function
aircraft. & Mean

NOMENCLATURE Interpolated value

Symbols and abbreviations 1.  INTRODUCTION
B Box function
c Wing chord
d Functional interpolation coefficientspnk

C Lift coefficientL

C Vertical force coefficientz

GK Goman-Khrabrov
H Heaviside step function
q Pitch rate
QS Quasi-static
t Time
t Time at which the indicial step is applied*

U Freestream velocity∞
x Internal state variable
� Angle of attack
	 Kroenecker deltaij

- Roll angle
) Auxiliary time variable
) Time at which critical state is crossedc

� Parameter denoting dependence on prior
motion history

CS Critical state

∞

* Evaluation at the time of the indicial step

 
In recent years, it has been possible to integrate the
flight-dynamics equations fairly efficiently using
linearized aerodynamics which are occasionally
supplemented with ad hoc methods (i.e.,
semi-empirical simulations or wind tunnel data) to
include nonlinear unsteady aerodynamic effects.  With
the expanded flight envelopes being considered for
future maneuvering aircraft, it has become
increasingly important to be able to model and predict
nonlinear, unsteady aerodynamics.  This includes the
prediction of the aerodynamic response in the
presence of flow separation, shock movement, and
vortex bursting, among other phenomena, at high
angles of attack and/or high angular rates.  Existing
flow prediction methods are either too expensive or
lack the proper fidelity to represent the physics of the
aerodynamic flow.  A consequence of the poor
modeling fidelity is a greater design uncertainty, lack
of performance, and, possibly, expensive redesigns
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and retrofits of existing fleet vehicles, such as the The second model (and the topic of the second paper,
F−18.  Ref. 14) is an artificial neural network which was

Future fighter aircraft will be required to perform aerodynamic characteristics of a pitching rectangular
controlled maneuvers well beyond traditional aircraft wing (wind tunnel test, Ref. 23). 
limits, for example, pitch up and flight at high angles  
of attack, rapid point-to-shoot, and other close-in 3.  BACKGROUND
combat maneuvers.  To perform these ultrafast
multi-axis motions, future tactical aircraft and missiles 3.1.  Linear Indicial Theory
will pioneer the use of innovative technologies such
as thrust vectoring control.  To produce the best The indicial approach is based on the concept that a
aircraft for these extreme flight conditions, it is characteristic flow variable , which describes
necessary to combine successfully several disciplines the state of the flow, can be linearized with respect to
in the design phase of the aircraft: flight mechanics, its boundary condition (or forcing function), (t), if
unsteady aerodynamics, flexible structural modeling, the variation of  is a smooth function of (t).
and control system simulation/design.  The anticipated This allows the representation of  in a Taylor
advanced maneuvers demand the use of aerodynamic series about some value of  = ; thus
methods capable of predicting characteristics of the
nonlinear post-stall regime for multi-axis motions at
extremely high rates.  

2.  OBJECTIVE AND APPROACH  

In order to predict the dynamics of maneuvering approximate solution is
aircraft or missiles at high rotational rates and high
angles of attack, it is essential to accurately and
efficiently model the nonlinearities associated with (1)
post-stall aerodynamics, including bifurcations and
hysteresis.  Nonlinear indicial theory offers a viable
alternative which can fulfill the need for the efficient
and accurate modeling of nonlinear "plant" Equation (1) is an approximation which becomes
characteristics.  The knowledge of these more accurate as .  Also, Eq. (1) is exact if
characteristics is a prerequisite for structural response  is a linear function of (t).  If the response
feedback techniques and control system configuration depends only on the elapsed time from the
system design.  The goal of this effort is to provide an perturbation  (a linear time invariant response)
unsteady aerodynamic model based on nonlinear then it may be shown (Ref. 1) that the formal solution
indicial response theory.  An important note for  is  
concerning the application of nonlinear indicial theory
is that the indicial functions (responses) can be
obtained from numerical computations, experimental
tests, or by analytic means, whichever is appropriate
or available.

The present paper is the first of two papers based on where .
the present study.  The validation of the nonlinear
indicial approach for predicting the unsteady
aerodynamic loads at high � was performed on two Hence, if the forcing function (i.e., the boundary
distinct models for the unsteady aerodynamic condition ) is known and if  is known from some
responses.  The first model (and the topic of this first computation or experimental determination, then
paper) is a two-parameter delay differential equation Eq. (2) gives the value of  for any schedule of
model approximating the pitch plane high angle-of- boundary conditions (t) without the need to
attack maneuvering of a fighter aircraft (full scale). compute  from first principles.  This has the effect

trained to reproduce the high angle-of-attack

0

If  is zero (a zero initial condition), then an
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of reducing computational costs considerably. In general, the linear indicial method cannot handle
Equation (2) is a semi-analytic relation between multiple solutions, bifurcations, jumps, and other

 and its boundary condition or forcing nonlinear phenomena which typically occur in high
function (t).  The symbol  represents a set of angle-of-attack vortical flows.  Another difficulty is
independent variables  such as spatial coordinates. that the flowfields of interest are characterized by a
For simplicity, if these variables do not depend on significant amount of hysteresis, i.e., the effects of the
time, they ( ) are omitted in subsequent discussions. past history of the flow are considerable.  This
 violates the assumptions which underlie the use of
The power of linear indicial theory is that if a system linear indicial theory because the linear indicial
can be approximated as linear time-invariant, then the functions do not contain any memory effects, and
knowledge of only the indicial functions of the system depend only on the instantaneous state of the system.
suffices to determine its response to any arbitrary  
schedule of its boundary conditions.  This leads to a To overcome these deficiencies, it has been proposed
tremendous reduction in computational requirements. (Refs. 7, 8) to use a Volterra series approach in order
In particular, in the case where the indicial functions to capture the nonlinear aerodynamic response.  The
can themselves be further approximated (e.g., via theory behind the Volterra series methodology asserts
exponential fits), then it may be shown (Ref. 2) that that the response of a nonlinear time invariant system
the entire unsteady aerodynamic prediction amounts to can be represented exactly as an infinite sum of
solving a low-dimensional system of inhomogeneous multidimensional convolution integrals, of which the
coupled first order ordinary differential equations. first term (linear kernel) is analogous to the linear
 indicial theoretical formulation:
As a general rule, linear indicial theory is valid away
from bifurcations such as changes in flow topology,
and provided that the perturbation displacements are
small.  Linear indicial theory has been validated in
numerous examples ranging from unsteady transonic
flow around airfoils (Ref. 3) and missile bodies
(Ref. 4) to separated viscous flow at low Reynolds
numbers (Ref. 5).  More recently, the nonlinear flow
associated with finite amplitude perturbations
( ) relative to a reference pitching motion
was shown to be predicted accurately using
Navier-Stokes indicial functions inferred in the
Laplace domain (Ref. 6).
 
3.2.  The Volterra Series Approach

It would be ideal to use indicial theory for the The Volterra theory approach derives from the
treatment of high alpha aerodynamics of a considerable body of work that has been done in
maneuvering aircraft.  However, there are several connection with the modeling of nonlinear systems
difficulties with this approach.  The first difficulty is "with memory" (Ref. 7).  The recent interest in
that it does not apply to systems for which the modeling unsteady nonlinear aerodynamics by this
underlying assumption of time-linear invariance approach has mostly focused attention on the
breaks down.  When nonlinear effects become identification of the so-called Volterra kernels ( ) in
important, such as in the case of the appearance of a both the Laplace (Refs. 7, 9) and time domain
shock wave or with any topological change of the (Ref. 8).  However, these efforts have been limited so
flowfield (e.g., separation onset, far to the identification of first and second order
appearance/disappearance of separation bubbles, burst kernels only.  This is because of the considerable
vortex, etc.), the indicial approach becomes work/expense involved in their determination (see for
inaccurate.  Such evidence can be found, for example, instance Ref. 8).  As previously recognized by Tromp
in the studies of Refs. 3 and 6. and Jenkins (Ref. 7) the Volterra series approach to
 modeling only has practical value if the number of

n
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(3)

terms necessary to represent the system is small.  This on the past history of the boundary conditions, i.e.,
amounts to restricting the method to the modeling of "memory" effects are included in the kernel.  Second,
weakly nonlinear systems.
 
Although the Volterra kernel identification method
shows promise at this time for the aerodynamic
modeling of weakly nonlinear configurations, these
methods are in their infancy and generally lack
practicality for routine aerodynamic simulations.

3.3.  Nonlinear Indicial Theory

The basic idea behind the use of nonlinear indicial
functions, as defined by Tobak et al. (Ref. 10) and
Tobak and Chapman (Ref. 11) is that the linear
formalism, Eq. (2), can be retained in the form of a
generalized superposition integral, provided that the
nonlinear indicial response  is now taken to be a
functional , where  denotes the
dependence on the entire motion history:

Equation (3) is, therefore, a generalization of the
linear convolution model (Duhamel convolution
integral), Eq. (2).  It was formally shown that this
formulation is equivalent to a nonlinear functional
expansion of which the classical Volterra series is a
subset.  In the nonlinear indicial formulation, the
nonlinear indicial function  is defined as
the following Fréchet derivative:

where the step in boundary condition, , is applied
at time t = ), and H designates the Heaviside step
function.

Note from Eqs. (2) and (3) that the linear and
nonlinear indicial function approaches formally differ
fundamentally in two ways.  First, the fact that

 has a separate dependence on t and )
rather than on the elapsed time (t-)) alone signifies
that  in the nonlinear formulation can now depend

the functional dependency on  itself
distinguishes the nonlinear indicial response from its
linear counterpart.  In practice, the quantity  of
interest might typically be an integrated load (e.g., C )L

or generalized aerodynamic force (for flexible bodies),
while the boundary condition  might be an
aeroelastic modal amplitude, or the angle of attack, �.
In the latter case, the generalized superposition
integral, Eq. (3), may express the full dependence of
C  on prior motion, given any arbitrary scheduleL

of �(t).  This formalism is formally valid as long as 
remains Fréchet-differentiable, a condition which is
violated at bifurcation points. 

In order to address this point, Tobak and Chapman
(Ref. 11) modified the theory so as to include
bifurcation points.  These are identified as discrete
points during the aircraft motion at which Fréchet
differentiability is lost.  This can be due to the loss of
stability of a particular solution (or equilibrium state
prior to the bifurcation) changing to a new equilibrium
state which is stable.  This discrete change to a new
equilibrium at the critical (bifurcation) time )  isc

accommodated in the theory by splitting the
generalized superposition integral as follows

where

is taken in the limit: 	)→0.  The term 
represents the possibility of a discontinuous jump.
Recent work (Ref. 12) at Wright Laboratory has
shown, for example, that when a critical state of the
flow is crossed, this gives rise to unusually long
transients.  These long transients are believed to be
associated with the jump response, .

4.  NONLINEAR INDICIAL MODEL   

The basis of the nonlinear indicial response model is
the generalized superposition integral which, in the
absence of bifurcations, can be expressed according to
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Eq. (3), i.e., possible if, for example,  can be fitted in

where the functional  is the nonlinear In a discrete system, the indicial responses
indicial response and  denotes the dependence  are not known or available at every time
on the entire prior motion history.  If the system is instant ) of the maneuver.  We start by considering
linear time-invariant, i.e., if the case where it is assumed that a finite number of

then Eq. (3) is the familiar Duhamel convolution for example  for the lift coefficient.  This
integral (linear indicial theory), Eq. (2). results in a global indicial function  which

If it is assumed that the general nonlinear indicial
response  can be simplified based on a
suitable parameterization (which may include, for (5)
instance, only the recent time history), then the
nonlinear indicial response may be expressed as 

In other words, just as in the linear formulation, the
indicial function depends only on the elapsed
time (t-)), provided, however, that the functional form

be determined according to parameters which
adequately describe its dependence on the recent
motion history at time ) (for example: �()), in a
constant maneuver).

Thus, for example, the continuous global response for
the lift coefficient, C , is given byL

(4)

where  designates the indicial response
resulting from an elementary perturbation applied at
time ) during the maneuver.  Alternatively,

 is the local approximation of the indicial
function around � = � ()), where � (t) is theM M

reference motion which was used to determine the
indicial responses.

It would be ideal to compute the generalized
convolution integral, Eq. (4), analytically.  This is

some way.  However, the lack of smoothness of the
indicial function space generally precludes such an
approach.  Instead, a numerical integration of (4) is
sought.

indicial responses have been determined along a given
trajectory � (t).  In this scenario, the time axis can beM

formally partitioned so that each partition [t , t ) isk-1 k

assigned one representative indicial function, denoted

can be formally written as 

where B  is a "Box function," defined ask

Equations (4) and (5) are the analog of the linear
indicial formulation for a system which is no longer
linear time invariant in a global sense.  This is
expressed by the fact that the kernel of the Duhamel
convolution integral is not a function of (t-)) alone
but of both variables t and ) independently.  Note
also that the functional dependency on  (in
Eq. (3)) is implicit, through the specification of the
nonlinear switching points, {t }, of the partition.k

Equation (4) is the lowest order implementation of
nonlinear indicial theory.  It corresponds to a
"piecewise-linear" indicial theory.  To construct higher
order (and presumably more accurate) models, it is
useful to look at Eq. (4) in terms of functional
interpolation.  The piecewise-linear mode relies upon
a zeroth-order interpolation of the indicial responses
themselves.   A somewhat more sophisticated model,
for example a first order model, would involve some
form of weighted averaging based on the "distance" to
the closest available indicial responses, k and k-1:
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(6)

(7)

(8)

A straightforward generalization of Eqs. (5) and (6) an ordered partition of the indicial function space in
for a number of weighted linear interpolation schemes the µ-direction, such that
is given by

where d ()) are interpolation coefficients.  Forpk

zeroth-order interpolation only one nonzero coefficient 5.  METHOD
is required (d ()) = 	 ); for linear interpolation, twopk pk

nonzero d ())'s are to be calculated, and so on. The development, testing, and validation of thepk

Nonlinear functional interpolation schemes were also amounts of unsteady aerodynamic data.  Unsteady
considered as part of this study.  Examples include aerodynamic responses are necessary, both to generate
quadratic and spline interpolation schemes.  The the required indicial functions and/or critical state
specific methods are discussed in Ref. 13.  Generally responses, and to compare the indicial theoretical
speaking, these schemes can be expressed as a prediction to the data for arbitrary maneuvers.
straightforward extension of Eq. (7), i.e.:

When dealing with novel motions for which no
indicial function is available, the concept of univariate
interpolation in time must be replaced by multivariate
interpolation schemes of the minimum number of
parameters needed to characterize the indicial function
space.  The formalism of Eq. (8) can be retained,
provided that a few definitional changes be made.
For example, if the five instantaneous parameters

and are required, then the concept of
box function must be extended in five-dimensional
space, i.e.,

In the above notation, it is understood that, for any
given parameter µ(t), the following definition is used:

where the functional interpolation nodes µ  representk

Similarly, the interpolation weights, d ()), will nowpnk

depend on the distance between the point
at time ) and the interpolation nodes

(multivariate partition) in parameter space.

nonlinear indicial prediction model require large

It would be ideal to use unsteady aerodynamic
responses inferred from experimental tests.  At this
time, however, many of the practical problems
involved in extracting such information have not been
resolved.  An alternative is the use of Computational
Fluid Dynamics (CFD), but this approach is expensive
and impractical.

The approach taken in the present research has been
to consider, instead, the use of efficient and,
hopefully, reasonably accurate nonlinear models for
the unsteady flow behavior.  Specifically, two models
were considered.  The first model (referred to as the
Goman-Khrabrov model) is an analytical model which
approximates the flight test aerodynamic responses of
a fighter aircraft undergoing "Cobra"-type maneuvers.
The application of nonlinear indicial theory to this
first example (i.e., the Goman-Khrabrov model) is the
topic of the present paper.  The second model is an
artificial neural network which was trained on wind
tunnel data of a pitching rectangular wing undergoing
dynamic stall.  This second example is much more
nonlinear and includes in particular a critical state or
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aerodynamic bifurcation which requires special including unsteady flow about an airfoil with trailing-
handling.  The application of nonlinear indicial theory edge separation (Ref. 16), a delta wing with vortex
to the neural network example is the topic of a future breakdown (Ref. 17), and a maneuvering fighter
paper (Ref. 14). aircraft (Ref. 15).  The model extends the usual flight

To avoid any possible confusion, from here on the differential equation for an additional internal state
term "model" will be reserved for the nonlinear variable x which accounts for unsteady effects
indicial prediction scheme outlined in the previous associated with separated and vortex flow.  The
section, i.e., (combining Eqs. (4) and (8), and variable x may, for instance, represent the location of
including the possibility of a jump response): flow separation or that of vortex breakdown.  The

in the case of the lift coefficient.  By contrast, the transient aerodynamic effects, or "dynamic properties
Goman-Khrabrov and neural network "models" (in the of the separated flow adjustment."  The parameters )
old terminology) will be referred to as "systems," and )  are different for different flowfields and must
since they approximate the behavior of real fluid be determined using parameter identification
systems (a pitching aircraft or a pitching wing). techniques.
Accordingly, the output of these systems will be
referred to as the "data," as opposed to the For a complete representation one must, of course,
"prediction," which is the output of the indicial model. link the force coefficient(s) to the motion parameters,

The Goman-Khrabrov and neural network systems is claimed to facilitate this task considerably.   The
both exhibit complex nonlinear behavior.  In each system considered here is that of a full-scale fighter
case, they are used (1) to generate the indicial and (if aircraft undergoing the well-known "Cobra" maneuver
present) critical-state-response data, and (2) to (Ref. 18).  Goman and Khrabrov use the following
compare against the indicial theoretical prediction for model for the vertical force coefficient C :
novel maneuvers.  The application of the indicial
theoretical prediction method to the Goman-Khrabrov
system is described below.

6.  APPLICATION OF THE METHOD TO
THE GOMAN-KHRABROV SYSTEM

6.1.  Description of the Goman-Khrabrov System

The Goman-Khrabrov system (abbreviated "GK") is
a mathematical model which was shown (Ref. 15) to 

accurately describe unsteady aerodynamic effects
observed in several experimental investigations,

 

dynamics equations by introducing a first order delay

form of the differential equation governing x is:

(10)

where � is the angle of attack, )  and )  are time1 2

constants, and x  describes the steady dependency of0

x on �.  The rationale for the model as well as the
details of the model can be found in Ref. 15.  For the
present purpose, it suffices to say that )  defines a2

quasi-static time delay associated with "changes in
circulation, boundary layer convection lags, and/or
boundary layer improvement effects," while )  is a1

relaxation time constant associated with global

1

2

and the introduction of an internal state-space variable

  

z

where the att superscript denotes the component due
to attached flow, nl is the nonlinear function, q is
pitch rate, c is the wing mean aerodynamic chord, and
	  is the elevator deflection.  The nonlineare

component C  is modeled simply asz
nl
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where C  and C designate envelope curves for Cz1 z2  z

for d�/dt > 0 and  d�/dt < 0, respectively, and g(x)
is a normalized weight function.

The authors obtained good agreement between this
model and flight test data for a maneuvering aircraft,
assumed to be an Su-27.  The two aircraft maneuvers
shown in Ref. 15 were analytically approximated as
shown in Fig. 1.  The first maneuver is a pitch up
from  to , then back down to , over
a total time period of approximately 6 seconds.  The
second maneuver is similar but only pitches up to
about  angle-of-attack over a period of 10 seconds
or so.  A simple parameter identification analysis was
performed by systematically varying the model
constants until our predictions (using Eq. 11)
approximately matched those of Ref. 15 for both
aircraft maneuvers.  The delay differential equation,
Eq. (10), was integrated using the Fehlberg fourth-
fifth order Runge-Kutta method (Ref. 19).  The result
is shown in Fig. 2, which is the analog of Goman and
Khrabrov's (1994) Fig. 13.  Actual values for the
model constants used are given in Ref. 13.  The lower
hysteresis loops in Fig. 2 correspond to x(�),
parameterized by time.  The pairs of loops in the
upper portion of Fig. 2 are the hysteresis curves
for C , corresponding to the GK model predictionz

(solid lines).  For both the C  and x curves, the staticz

curves (C  and x ) are indicated for reference (dashedz 0
st

lines).

6.2.  Indicial Function Determination

The basic procedure for determining the indicial
responses of the Goman-Khrabrov system is illustrated
in Fig. 3.  In this example, the indicial response is
determined for a perturbation 	� introduced at time
) ≈ 7 (i.e., around  during the pitch down
portion of the  Cobra maneuver illustrated in
Fig. 1).  Following the definition of the indicial
response, two almost identical maneuvers � (t) and1

� (t) are carried out.  The two maneuvers coincide2

with the Cobra maneuver for t < ).  At t = ), the
motion is stopped for the first maneuver
(� (t) = � ()), for t ≥ )).  The second maneuver is1 1

similarly stopped, except that the angle of attack is
incremented by 	� at time ) (� (t) = � ()) +	�, for2 2   

t ≥ )).  Let C (t) and C (t) denote the aerodynamicz,1 z,2

responses associated with � (t) and � (t), respectively.1 2

The indicial response is calculated as2

This technique is referred to as the direct technique.
It is a straightforward application of the definition of
the indicial function as a Fréchet derivative, and
requires (1) that infinite rates be produced at t = ),
and (2) that 	� be infinitesimal.  Because of these
constraints, the direct technique cannot be used
experimentally, and also causes serious difficulties
with CFD.  Under these circumstances, an alternative
method must be used.  For example, we have shown
(Ref. 6) that it is possible to correctly infer the
indicial response by using inverse Laplace transform
techniques.  These were successfully applied to cases
where � (t)-� (t) for t ≥ ) is neither constant nor2 1  

infinitesimal.

To make use of the direct technique in a discrete
system, one must ensure (1) that the results are
convergent for 	�→0, and (2) that they are also
convergent for →0.  Both of these tests are easily
met in the Goman-Khrabrov system.  For example,
the convergence of the indicial response with the
integration time step (in seconds) is illustrated in
Fig. 4.  The parameters  = 0.01 and 	� = 0.01°
were selected for the remainder of the GK system
study.

Examples of indicial responses calculated at various
points throughout the large amplitude (
"Cobra") maneuver are shown in Figs. 5a and 5b.
Note that, for clarity, the indicial functions plotted in
Fig. 5 are time-shifted according to the time instant at
which the perturbation 	� is applied (i.e., )=0
corresponds to t=)).  Note also that the indicial
responses 	C /	� are in units of inverse degrees.  Itz

should be clear from the result of Fig. 5 that the
indicial response is not only a function of the
instantaneous angle of attack, but indeed of the prior

 Note that, in the case of the Goman-Khrabrov2

system, the indicial responses can also be calculated analytically
(see Ref. 13)
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motion history.  For example, the last six indicial Using the 24 indicial responses shown in Fig. 5, the
responses (labeled " ") in Fig. 5b all aerodynamic force build-up time history, �C  ≡ C (t)-
correspond to a portion of the maneuver where the C (0) is predicted using the linear functional
angle of attack remains unchanged.  Yet, the indicial interpolation version of the model, i.e.:
responses exhibit significant variations.

6.3.  Test of the Indicial Method

There are two levels of testing of the indicial
theoretical prediction.  The first level (discussed here)
involves reproducing the very maneuver from which
the indicial responses were determined, prior to the
indicial step.  In this manner, one has the opportunity
to test two requirements: (1) the validity of the basic where the partition {t } is defined by the midpoint
formulation (Eq. 4), and (2) the ability to approximate between successive indicial functions.  Note that the
Eq. (4) via functional interpolation.  In other words,
the first level of testing examines the feasibility of
smoothly blending a finite number of discrete indicial
functions (for example, via Eq. (6)) to predict the
unsteady aerodynamic response in the case where
these indicial responses are known exactly.  By
"known exactly" we mean that there should not be
any error or uncertainty in the indicial function due to
effects of prior motion history.  Such issues are
addressed by the second level of testing (Section 6.7),
in which one attempts to use blind indicial responses
recorded for well-defined prior motion histories in
order to predict the unsteady aerodynamic response
associated with completely novel maneuvers.

6.4.  Critical State

Prior to engaging in the testing of the accuracy of the
model, it is essential to know whether or not critical
states are encountered, since the convolution integral
will then have to be split (Eq. (9)).  Unlike the neural
network example examined in Refs. 13 and 14, the
Goman-Khrabrov system can be shown not to have
any critical states.  The proof is straightforward.  It
involves computing the indicial functions analytically
and searching for singularities.  Details of some of the
key derivations are provided in Ref. 13 and are not
included in the present paper.  Note that the absence
of aerodynamic bifurcations in the Goman-Khrabrov
system pertains to the mathematical representation of
the aerodynamics and does not in any way suggest
their absence in the real flowfield.  The main point for
the present purpose is that the simplified version of
nonlinear indicial theory can be tested in this example
in isolation from any issues related to the inclusion of
critical state (jump) responses.

z z

z

k

summation on k is necessarily finite, i.e., it is carried
out from k=1 to k=K, if .  Details
concerning the implementation of Eq. (12) can be
found in Ref. 13.  The resulting prediction using 24
indicial functions is shown in Fig. 6.  It was shown
(Ref. 13) that the prediction can be made arbitrarily
accurate simply by choosing a sufficiently large
number of indicial functions.  To illustrate the
importance of phase lags, if one goes through the
exercise of attempting to predict the aerodynamic
force build-up history, C (t), based only on thez

aerodynamic derivatives [	C /	�]  (i.e., by treatingz )=∞
the indicial responses as step functions simulating an
instantaneous response (no phase lags)), then the
curve labeled "quasi-steady" is obtained (see Fig. 6).
Thus, unsteady effects are responsible for the
asymmetric nature of the response with respect to �max

and for the dynamic overshoot ([ C ]   1.9) withz max

respect to the quasi-static prediction
([ C ]  ≈ 1.1).  z max,qs

6.5. Parameterization of the Indicial Function
Space

The true test of the indicial method lies in the ability
to predict unsteady aerodynamic responses for
completely new maneuvers.  It may be possible to
record once and for all a finite number of indicial
responses, but how does one relate the indicial
functions required during a novel maneuver to the
pre-stored indicial responses?  Indeed, the indicial
approach only has value if useful simplifications can
be made.  A fairly intuitive idea is to assume that the
indicial functions are only a function of the recent
time history.  Such an assumption is supported by
experimental observation (see, for example, Ref. 20).
It  can also be proven by Taylor series arguments that,
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with:

Thus,

for motions �(t) which are sufficiently smooth, the The term x(t ) describes the internal state of the
indicial function at time ) can be appropriately system at the time the indicial step is applied.  This
characterized using the instantaneous values of term formally accounts for the effects of the entire

, etc.  How many derivatives prior motion history (not just the instantaneous angle
are required is not known, nor whether this type of of attack and pitch rate).  However, due to the
projection is the most efficient one.   A central issue decaying exponential term, the effect of prior motion3

is to determine what constitutes an efficient history is most likely restricted to several time
parameterization of the indicial function space.  The constants ) .  This secular term does not affect the
Goman-Khrabrov system, although it is only one indicial function at large times, but is the dominant
example, presumably represents a maneuvering component of x* at )=0 and, thus, will have a
aircraft and, because it is analytical, offers the dominant effect at large rates.
opportunity to answer some of these questions and to
guide the development of the method. Given that all terms other than the secular term x(t )

6.6.  Motion Parameters Governing 	C /	� of � and d�/dt, the prediction error that will bez

What is important here is to note the dependencies two possible sources.   The first possible source of
involved in calculating 	C /	�.  In particular, we error is the inability to match � and d�/dt.  In otherz

have shown (Ref. 13) that � and d�/dt immediately words, at a given �, the approximating indicial
prior to the application of the indicial step determine function must have been inferred using a maneuver
uniquely the indicial response 	x/	�.  The fact that which, at a minimum, must match the pitch rate at the
there is no effect of prior motion history other than time the indicial step is applied.  The second source
�* and d�*/dt| - is a direct consequence of the0

particular form of the Goman-Khrabrov delay
differential equation for x.  A number of other terms
in the analytical evaluation of the indicial response
	C /	� may also be shown to depend only on thez

value of �*.  Only one term is not completely
determined by (�*, d�*/dt| - ): this "secular" term  is0

4

the initial condition for x*()):

*

1

*

are determined uniquely by the instantaneous values

incurred by using inexact indicial functions will have
5

of error is due to error in the secular term.  There,
matching � and d�/dt is insufficient.  Since matching
the entire prior motion history defeats the purpose of
the method, useful approximations of x(t ) must be*

found.

A useful way of quantifying the importance of x(t*)
on the indicial function is to look at the accuracy of
	C /	� at the time where it is most sensitive to x(t*)z

namely, at )=0.  As may be seen from Fig. 7, this
effect is significant.  The three types of approaching
indicial maneuvers considered in Fig. 7 match either
�* (with d �/dt =0, m>0), �* and d�*/dt (withm m

d �/dt =0, m>1), or �*, d�*/dt, and locally d �*/dtm m 2 2

(with d �/dt =0, m>2).  These approach maneuversm m

prior to application of the indicial step are hereafter
referred to as "constant" or "zeroth order," "linear" or
"first order," and "locally quadratic" or "second
order," respectively.  The maneuver labeled "full
prediction" uses the entire prior motion history to
determine x(t*) exactly.  It is clear that the higher the
number of derivatives matched, the more accurate the
determination of the secular term, as expected from
theoretical derivations. For example, in the field of electromagnetics3

(Ref. 21), it is not uncommon to approximate the nonlinear
impulse response as a product g(t)h(t-))g()) = h(t-))| , ratherg()),g(t)

than h(t-))|g()), dg())/d), d g())/dt ,...
2 2

 The terminology is chosen to reflect the long4

lasting effects associated with this term, by analogy with slow interpolation error: we assume here that indicial functions are
time-scale terms in asymptotic expansions. available at every point.

 Note that this reasoning is independent of functional5
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Next, we examine the effect of prior motion history herein.  It is important to keep in mind, however, that
on the unsteady aerodynamic load prediction itself. this projection of the entire prior motion history onto
To assess the overall effect of these errors for a a point  is a rather severe caricature, and the
particular maneuver requires the application of the model may have to be extended accordingly for
Duhamel convolution integral for the prediction of the different applications.
force build-up, C (t) = C (t)-C (0), namely thez z z

application of 6.7. Two-Dimensional Parameterization of the

approximated by Eq. (12).  The application of particular maneuver, except for the instantaneous �*
Eq. (12) using constant, linear, and locally quadratic and d�*/dt.  These observations, although limited to
approaching maneuvers for the indicial functions the Goman-Khrabrov system, suggest that it is
yields the predictions shown in Fig. 8.  Note that possible to parameterize the indicial functions of the
these calculations do not involve functional system using only � and d�/dt.
interpolation in parameter space, i.e., at each time )
required in the evaluation of the integrand, 	C /	� is In the present section, we consider the next step in az

calculated exactly (i.e., analytically, given the practical implementation of these ideas to the
assumed indicial maneuver).  Therefore, the formulation of a nonlinear indicial model for
comparisons shown in Fig. 8 isolate strictly the effect maneuvering aircraft.  In order to be practical, the
of assumed prior motion history of the indicial method must require the use of as few indicial
responses. responses as possible.  So far, the concept of

Similar tests (not shown here) were performed on interpolation along the time axis.  Specifically, a
different test maneuvers.  Based on the results of linear one-dimensional interpolation scheme was used
these tests, either linear or quadratic approach indicial (Eq. 12). 
maneuvers seem to provide reasonable
approximations.  The use of higher order motion Two additional aircraft maneuvers are considered in
derivatives would presumably increase the accuracy Fig. 9.  The maneuver marked "Su-27 (#1)" is the 90°
further, but may not be a practical proposition. cobra maneuver considered until now.  The maneuver6

Based on the example maneuvers considered so far, a marked "Su-27 (#2)" is the second flight test
suitable compromise, in terms of accuracy, is to use maneuver shown in Fig. 1 (60° maneuver).  The third
the linear approach maneuver.  In the following, we maneuver is a hypothetical maneuver made of a
consider the application of the nonlinear indicial sequence of fifth order polynomial ramps.
theoretical model, based only on the knowledge of
indicial functions parameterized by instantaneous Without any knowledge of prior motion history, it is
angle of attack �* and pitch rate d�*/dt.  This two- possible to parameterize the indicial function space in
dimensional parameterization is based partly on terms of � and d�/dt only, provided that the assumed
experimental evidence (Ref. 20), partly on analysis approach indicial maneuver is of the linear type
(Ref. 13), and partly on the empirical results reported mentioned previously.  In phase space, the three

Indicial Function Space

From the above results it is observed (1) that the
indicial responses (and, thus, the entire prediction)
involve a secular term x(t*) which depends on the
entire prior motion history, and (2) that this term can
be approximated reasonably accurately without
knowing anything about the past history of a

functional interpolation referred to one-dimensional

maneuvers shown in Fig. 9 each have a trajectory
which visits a subset of this parameter space.  This is
shown in Fig. 10.  In addition, Fig. 10 shows an
example of the location of the indicial functional
interpolation nodes (solid symbols).  Note that the
indicial maneuvers corresponding to each of the
functional interpolation nodes are not shown in the

 A possible alternative is to consider  and/or d /dt6

at a previous time, t - t ( t  large enough), as additional* * *

parameters.  Such an approach would not reduce or alter the
dimensionality of the parameterization in any way, but would
alleviate the dependency on "noisy" experimental determinations
such as angular acceleration and other higher order derivatives.
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figure.  These indicial maneuvers would correspond to interpolation nodes.  The second characteristic is the
horizontal lines (since these are "order one" approach increased accuracy of the method, which increases
maneuvers) and, thus, have very little in common, if with the number of interpolation nodes.  This suggests
any, with the three maneuvers to be predicted. the possibility of constructing a nonlinear indicial

In order to provide a more complete assessment of the experience.  "Experience" in this context is defined by
overall accuracy of this method, it is necessary to the number of available indicial responses.  These
compare the indicial theoretical prediction with responses can, in principle, be inferred from
respect to the data itself (i.e., finite difference experiment, CFD, or analysis, whichever is available
integrations of the Goman-Khrabrov system or appropriate.  As more and more indicial functions
equations).  Furthermore, such comparisons must be become available, the accuracy of the model increases
made on the basis of several maneuvers.  The accordingly.
accuracy of the indicial theoretical prediction using
the interpolation nodes shown in Fig. 10 is illustrated Finally, and as a note of caution, it should be stressed
in Figures 11, 12, and 13.  The bivariate interpolation that the actual number of indicial functions required
scheme used in each case for the indicial functions is to accurately characterize a nonlinear system, such as
a simple piece-wise bicubic polynomial fit.  A a maneuvering aircraft at high angles-of-attack and/or
parametric study was carried out in Ref. 13.  As an high roll rates, will depend on the nature of the
example, the deterioration of the prediction accuracy system itself.  For instance, the indicial function space
with increased sparseness of the indicial function associated with the Goman-Khrabrov system admits
space is illustrated in Fig. 14. variations which are considerably smoother than those

The particular bicubic polynomial interpolation routine trained on dynamic stall (see Refs. 13 and 14).  Thus,
used thus far requires a rectangular grid for the it is expected that the indicial function space in other
(�,d�/dt) interpolation nodes.  In an experimental systems may require finer sampling, in order to
situation (i.e., in the hypothetical case where the generate accurate predictions.  Regardless, the use of
nonlinear indicial responses of the system might be the Goman-Khrabrov system in this study has
inferred from experimental tests), indicial functions permitted the development of the basic framework for
may not be available at all points of a rectangular grid multidimensional parameterization and nonlinear
in (�,d�/dt) space.  To handle this situation, one of a interpolation of the indicial function space.  The
number of interpolation schemes for scattered data special issues concerning the handling of aerodynamic
may be used.  The one used here is a modified bifurcations or critical states have not been addressed
quadratic Shepard interpolation scheme (Ref. 22).  In in this example, and will be the object of a future
the example shown in Fig. 15, an interpolation node paper (Ref. 14).  
was removed from an irregular 6×5 grid in � and
d�/dt.  The interpolation node that was removed was 7.  SUMMARY
chosen to correspond to low angle of attack at
negative pitch rate.  This is known to be a sensitive A nonlinear indicial prediction model was developed
part of the prediction accuracy, where large and rapid to predict unsteady aerodynamic responses.  The
changes in x take place at reattachment.  As a result, model is based on nonlinear indicial response theory
the prediction for maneuver Su27 #1 is consistently and on functional interpolation of parameterized
less accurate around t=8.  The addition of noise on the responses.  Inputs to the model are the time-dependent
location of the available indicial functions was shown state variables and the prerecorded nodal indicial
not to substantially affect the quality of the prediction, responses of the system.  The outputs of the model
which is an indication of the robustness of the are the unsteady aerodynamic load time histories in
method. response to arbitrary schedules of the state variables.

Two key characteristics of the prediction method are
emphasized.  The first characteristic is its robustness,
as judged by the sensitivity to the location of

prediction tool the accuracy of which improves with

observed in the case of an artificial neural network

 The nonlinear indicial prediction method was applied
to a model problem consisting of a single degree of
freedom aerodynamic system (the Goman-Khrabrov
model) which was fine-tuned to mimic the
aerodynamic characteristics of "Cobra"-type flight test
maneuvers of a fighter aircraft at high angles of
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attack.  The validation of the method involved 3.Lesieutre, D. J., Reisenthel, P. H., and Dillenius,
recording a finite number of indicial functions which M. F. E.: A Practical Approach for Calculating
were subsequently used to construct the flow response Aerodynamic Indicial Functions with a
to arbitrary schedules of �(t).  One of the important Navier-Stokes Solver, AIAA Paper No. 94-0059,
findings of this study is that, based on the examples January 1994.
considered thus far, efficient parameterization of the 4. Reisenthel, P. H., Lesieutre, D. J., and Nixon,
indicial function space can be achieved based only on D.:  Prediction of Aeroelastic Effects for
local information, such as the instantaneous angle of Sea-Skimming Missiles with Flow Separation,
attack and pitch rate.  This "local parameterization" is AIAA Paper No. 91-1052, April 1991.
believed to be an essential step in the feasibility of the 5. Reisenthel, P. H. and Nixon, D.:  Application of
method, although this requires further verification Indicial Theory to the Prediction of Unsteady
using a variety of aerodynamic systems of practical Separation, AIAA Paper No. 91-1742, June
interest. 1991.

For future flight simulation applications, the nonlinear Tool for the Prediction of Dynamic Stall, AIAA
indicial prediction method has the potential of being Paper No. 94-0537, 1994.
considerably faster than CFD since it involves only 7. Tromp, J. C. and Jenkins, J. E.:  A Volterra
functional interpolation and the calculation of a Kernel Identification Scheme Applied to
generalized convolution integral. The method also Aerodynamic Reactions, AIAA Paper No.
becomes increasingly accurate as more indicial 90-2803, August 1990.
functions become available.  With the advent of new 8. Silva, W. A.:  A Methodology for Using
control technologies, new and unconventional Nonlinear Aerodynamics in Aeroservoelastic
maneuvers at high rates and high angles of attack are Analysis and Design, AIAA Paper No. 91-1110,
to be expected.  In these cases, conventional methods 1991.
(e.g., dynamic derivatives) may not be capable of 9. Karmakar, S.B.: Approximate Analysis of
modeling accurately the key physics.  The present Nonlinear Systems by Laplace Transform,
nonlinear indicial prediction method provides a
rational foundation to model off-line the nonlinear,
unsteady, high angle-of-attack aerodynamics which
may characterize future aircraft flight engagements,
while retaining a fidelity to the flow physics of which
conventional models are incapable.
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Figure 4. Convergence of the Indicial Response
with Integration Time Step.

Figure 5a. Pitch Up Indicial Responses for the
Large Amplitude Cobra Maneuver.

Figure 5b. Pitch Down Indicial Responses for the
Large Amplitude Cobra Maneuver.

Figure 6. Hysteresis Plot of Indicial Theoretical
Prediction Versus Data, Large
Amplitude Cobra Maneuver.

Figure 8. Effect of Indicial Ramp Order on Cz

Prediction, Large Amplitude Cobra
Maneuver.

Figure 7. Effect of Indicial Ramp Order on
	C /	� at )=0.z
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Figure 9. Time Histories of Three Pitch Plane
Test Maneuvers.

Figure 10. Illustration of Maneuver Trajectories in
Parameter Space.  (Filled symbols
indicate the location of the interpolation
nodes).

Figure 11. Accuracy of Prediction Scheme Based
on (�,d�/dt) Fifteen-Node Bi-Cubic
Interpolation.

Figure 12. Accuracy of Prediction Scheme Based
on (�,d�/dt) Fifteen-Node Bi-Cubic
Interpolation.

Figure 13. Accuracy of Prediction Scheme Based
on (�,d�/dt) Fifteen-Node Bi-Cubic
Interpolation.
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Figure 14. Accuracy of Prediction Scheme Based on (�,d�/dt) Six-Node Bi-Cubic Interpolation.  (Interpolation
Nodes Are Indicated by the Filled Squares in the Upper Left Figure.  Lower Left Maneuver Is
"Stepwise" Maneuver; Upper Right Maneuver Is "Su27 #1"; Lower Right Is "Su27 #2").

Figure 15. Accuracy of Prediction Scheme Based on (�,d�/dt) Modified Shepard Quadratic Interpolation, Large
Amplitude Cobra Maneuver.  (The Prediction is Based on the Interpolation Nodes Shown in the Left
Graph).


