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ABSTRACT

In order to predict the dynamics of maneuvering
aircraft or missiles at high rotational rates and high
angles of attack, it is essential to accurately and
efficiently model the nonlinearities associated with
post-stall aerodynamics, including bifurcations and
hysteresis.  Nonlinear indicial theory offers a viable
alternative which can fulfill the need for the efficient
and accurate modeling of nonlinear "plant"
characteristics.  The present paper describes recent
applications of linear and nonlinear indicial response
models for aerodynamic prediction of maneuvering
flight vehicles.

NOMENCLATURE

Symbols and abbreviations
b Wing span
c Wing chord
C Sectional drag coefficientd

C Drag coefficientD

C Lift coefficientL

C Sectional lift coefficientl

C Sectional pitching moment coefficientm

C Sectional normal force coefficientn

C Pressure coefficientp

C Sectional tangential force coefficientt

C Vertical force coefficientz

CSR Critical-state Response
f Aerodynamic load
f Indicial response of f with respect to ��

f Indicial response of f with respect to --

h Height with respect to mean sea level
H Heaviside step function
IR Indicial Response

k Reduced frequency  (k ≡ 3b/2U )∞
q Pitch rate
QS Quasi-static
t Time
t Time at which the indicial step is applied*

U Freestream velocity∞
� Angle of attack
� Nondimensional pitch rate +

� Wavelength
) Auxiliary time variable
) Time at which critical state is crossedc

�f Aerodynamic load build-up
�f Critical state responseCS

� Parameter denoting dependence on prior
motion history

3 Angular frequency

Subscripts
CS Critical State
dyn Dynamic
p Predicted
qs Quasi-static
s Stall
∞ Time-asymptotic value (except for U )∞

Superscripts
CS Critical State
s Stall
" Derivative with respect to time
"" Second derivative with respect to time
~ Indicial function

1.  PROBLEM DEFINITION
 
In recent years, it has been possible to integrate the
flight-dynamics equations fairly efficiently using
linearized aerodynamics which are occasionally
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(2)

supplemented with ad hoc methods (i.e., a description of ongoing work towards the systematic
semiempirical simulations or wind tunnel data) to extraction of nonlinear indicial and critical state
include nonlinear unsteady aerodynamic effects. responses from unsteady aerodynamic databases.
However, with the expanded flight envelopes being
considered for future maneuvering aircraft, it has 3.  INDICIAL THEORY
become increasingly important to be able to model
and predict nonlinear, unsteady aerodynamics.  This The indicial approach is based on the concept that a
includes the prediction of the aerodynamic response in characteristic flow variable , which describes the
the presence of flow separation, shock movement, and state of the flow, can be linearized with respect to its
vortex bursting at high angles of attack and/or high boundary condition (or forcing function), (t), if the
angular rates.  variation of  is a smooth function of (t).  This

Future fighter aircraft will be required to perform about some value of  = ; thus
controlled maneuvers well beyond traditional aircraft
limits, for example, pitch up and flight at high angles
of attack, rapid point-to-shoot, and other close-in
combat maneuvers.  These advanced maneuvers
demand the use of aerodynamic methods capable of
predicting characteristics of the nonlinear post-stall
regime for multiaxis motions at extremely high rates.
At present, the only methods of this scope are Navier-
Stokes methods.  However, their use in flight
simulations remains impractical at this time.
Nonlinear indicial theory has the potential to
circumvent some of the present difficulties, while
providing a fidelity to the flow physics of which other
methods appear incapable.

The present paper summarizes recent applications of
unsteady aerodynamic modeling based on linear and
nonlinear indicial theory.  The aerodynamic indicial
prediction depends on the availability of the indicial
and critical state responses of the flow.  The results of
identification methods aimed at their extraction are
described at the end of this paper.

2.  OBJECTIVE

The overall objective of this work is the development
of an aerodynamic modeling capability based on
nonlinear indicial response theory.  The results of
earlier studies  have demonstrated the feasibility of1,2

building such a model using key simplifications based
on the original formulation proposed by Tobak et al.
(Ref. 3) and Tobak and Chapman (Ref. 4).  Our goal
is to validate this model by applying it to
aerodynamic problems of increasing complexity.

First, some applications of linear indicial theory are
briefly reviewed.  This is followed by a summary
description of the aforementioned feasibility study
using nonlinear indicial theory.  The paper ends with

allows the representation of  in a Taylor series

If the response depends only on the elapsed
time from the perturbation  (a linear time invariant
response) then it may be shown  that the formal5

solution for  is  

(1)

where .

Hence, if the forcing function (i.e., the boundary
condition ) is known and if  (the indicial
response) is known from some computation or
experimental determination, then Eq. (1) gives the
value of  for any schedule of boundary conditions

(t) without the need to compute  from first
principles.
 
The basic idea behind the use of nonlinear indicial
functions,  is that the linear formalism, Eq. (1), can3,4

be retained in the form of a generalized superposition
integral, provided that the nonlinear indicial response 
is now taken to be a functional , where

 denotes the dependence on the entire motion
history.  Furthermore, the nonlinear indicial theoretical
formulation allows for the presence of aerodynamic
bifurcations by splitting the integral, i.e., for example:
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where the nonlinear indicial function  is maneuver.
defined as the following Fréchet derivative:

and �f (t; ) is the so-called jump response C ) or as table look-up parameters as functions ofCS

associated with crossing the bifurcation at time ) . flight conditions.  This method of modeling thec 

A critical state is defined  as a transition from one usually augmented with aerodynamic damping6

equilibrium flow state to another and is often derivatives such as C  to represent part of the
associated with a discontinuity in the static unsteady effects.  For flight low over the sea, as
aerodynamic loads and/or their derivatives.   The indicated in Fig. 2, the flow environment is typically7

associated transient response is referred to either as unsteady, due to the presence of gusts from the waves
the critical state response (CSR) or the jump response, and from atmospheric turbulence.  Significant
�f (t ; ). unsteady aerodynamic phase lags can occur under CS 

 

4.  LINEAR INDICIAL MODELING not predicted by conventional methods.  In addition,

Over the past several years, there have been a number unsteady flow environment may excite structural
of applications of linear indicial theory to either linear bending modes of slender missiles.  Therefore, to
or linearized flow problems.  These include supersonic model sea skimming flight over the sea, a method is
flow, moving shocks, viscous flow (moving required which models both the flexible missile and
separation ), and aeroservoelasticity.  The goal of this the unsteady aerodynamics.8

section is not to review these applications but, rather,
to provide two illustrations.  The first example Lesieutre et al. (Ref. 10) developed a new simulation9

(application to supersonic flow) stresses the accuracy program which models a flexible missile flying low
of the method.  The second application (the simulation over the sea and includes the effects of unsteady
of a sea-skimming missile) illustrates the use of aerodynamics.  The simulation contains detailed
indicial theory in the context of a comprehensive models of the missile guidance and control systems,
multidisciplinary flight simulation. including the sensors and fin actuators.  Unsteady10

Figure 1 compares the numerically calculated lift computed off-line using CFD and integrated into the
response �C (t) to the �C   predicted using indicial overall simulation using indicial theory.  TypicalL L

theory.  The lift response corresponds to the simulation results at sea state 5 and Mach 0.8 are
hypothetical maneuver �(t) of a two-dimensional shown in Fig. 3.  The missile is assumed to be flying
airfoil in inviscid flow at Mach 2.0 (Lesieutre et al., in a direction perpendicular to the wave fronts and
Ref. 9).  Figure 1 indicates that the indicial function flies free for the first ten seconds after which it is
approach works extremely well for this flight commanded to fly low over the sea.  Figure 3 gives
condition; the indicial theoretical prediction (dotted the time histories for (from top to bottom) missile
line) is virtually indistinguishable from the altitude, vertical velocity, pitch rate, tail fin deflection
numerically simulated response using ARC2D (dashed angle, and first bending mode amplitude.
line).  The error depicted in Fig. 1 is the difference
between the actual (i.e., numerically computed) 5.  NONLINEAR INDICIAL MODELING
response and its analytic prediction based on indicial
theory.  The reason for the excellent agreement in this An essential simplification of the nonlinear indicial
case is due primarily to the aerodynamics being linear formulation was achieved  by parameterizing the
for the low angle of attack conditions of the indicial and critical state responses using

The development of a comprehensive
multidisciplinary flight simulation tool based on
indicial theory is described in Ref. 10.  Conventional
flight simulation programs generally model the
aerodynamics of a vehicle by prespecifying the
aerodynamic characteristics of the vehicle within a
separate module.  These characteristics are usually
stored as either aerodynamic derivatives (for example,

N�

aerodynamics is fundamentally quasistatic and is

mq

these adverse, often off-design, conditions which are

the accelerations experienced by the missile due to the

aerodynamic responses of the flight vehicle are

1,2
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instantaneous motion parameters, for example  and variable x which accounts for unsteady effects
.  The basic idea described in Refs. 1 and 2 is that, associated with separated and vortex flow.  The

once the problem is appropriately parameterized, the variable x may, for instance, represent the location of
knowledge of only a finite number of response flow separation or that of vortex breakdown.  The
functions may suffice to predict accurately the form of the differential equation governing x is:
outcome of new maneuvers.  While this may not be
true of all aerodynamic systems, the simplifying
assumption has not been contradicted by the two
nonlinear aerodynamic systems examined thus far.
The first model (referred to as the Goman-Khrabrov
model, Ref. 11) is an analytical model which where � is the angle of attack, x  describes the steady
approximates the flight test aerodynamic responses of dependency of x on �, and )  and )  are time
a fighter aircraft undergoing "Cobra"-type maneuvers. constants which must be determined using parameter
The application of nonlinear indicial theory to this identification techniques.
first example (the Goman-Khrabrov model) is the
topic of Ref. 1.  This first example is useful in The system considered here is that of a full-scale
understanding the foundations of the nonlinear indicial fighter aircraft undergoing the well-known "Cobra"
prediction model.  However, it is a simple nonlinear maneuver (Ref. 15), in which the vertical force
model, in the sense that there are no crossings of coefficient C  is related explicitly to the instantaneous
critical states.  The second model is an artificial values of x and �.  This system was shown  to have
neural network which was trained on wind tunnel data no critical state.  Note that the absence of
of a  pitching  rectangular  wing  undergoing aerodynamic bifurcations in the Goman-Khrabrov
dynamic stall (Ref. 12).  This second application is an system pertains to the mathematical representation of
example of a highly nonlinear system and includes at the aerodynamics and does not necessarily imply their
least one critical state (aerodynamic bifurcation), absence in the real flowfield.  The main point is that
requiring special handling.  The application of nonlinear indicial theory was tested in this example,
nonlinear indicial theory to the neural network in isolation from any issues related to the inclusion of
example is described in more detail in Ref. 2. critical state (jump) responses.

The Goman-Khrabrov and neural network systems 5.2.  Description of the Neural Network System
both exhibit complex nonlinear behaviors which
approximate the unsteady flow physics.  In each case, The second nonlinear flow model that was considered
they are used (1) to generate the indicial and (if is an artificial neural network.  This artificial neural
required) critical-state-response data, and (2) to network (described in the work of Faller et al.,
compare with the indicial theoretical prediction for Refs. 12,17,18) was trained on wind tunnel data for a
novel maneuvers.  The application of the indicial rectangular wing (NACA0015 profile, chord Reynolds
theoretical prediction method to both systems is number Re = 70,000) pitching about the 1/4 chord
described in previous AIAA papers.   A brief location.  The particular neural network program that1,2

summary of the results is given below. was used in this study is a recursive neural network,

5.1.  Description of the Goman-Khrabrov System from � = 0° to � = 60° , and using a constant

The Goman-Khrabrov system is a mathematical model network is treated here as a "black box" substitute for
which was shown (Ref. 11) to accurately describe the experiment.  The pitch-up neural network predicts 

unsteady aerodynamic effects observed in several the sectional force coefficients C , C , C , C , and C
experimental investigations, including unsteady flow at three span locations (0%, 37%, and 80% of the
about an airfoil with trailing-edge separation total wing span), in addition to the pressure
(Ref. 13), a delta wing with vortex breakdown coefficients at 45 locations on the upper surface.  The 

(Ref. 14, and a maneuvering fighter aircraft (Ref. 11). location of the pressure taps is shown in Fig. 4.  The
The model extends the usual flight dynamics architecture of the neural network is schematically
equations by introducing a first order delay illustrated in Fig. 5.  The neural network has an input
differential equation for an additional internal state layer with 47 inputs (45 fed back C 's, plus the

0

1 2

z
16

corresponding only to pitch up motions of the wing,

nondimensional pitch rate 0.01 <� < 0.2.  The neural    
+

l d n t m

p
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instantaneous � and d�/dt), two hidden layers, each perfect agreement between data and prediction in the
with 32 neurodes, and 60 outputs (45 predicted C 's latter case is due to two factors.  The first is the highp

and 15 force coefficients). sampling of the indicial function space (one indicial

This neural network system was shown (Ref. 12) to of magnitude more functions than in the Goman-
replicate not only the constant pitch rate data it was Khrabrov case).  The second is the prior identification
trained on, but also to be able to predict the flow of a critical state at the static stall angle (�  ≈ 16.4°)
responses to "novel maneuvers" (both constant and and the accurate determination of the associated jump
variable pitch rates) with surprisingly high accuracy, response (see Ref. 2).  In practice, of course, it would
provided that the physics of the flow are similar.  For be impractical to use so many indicial functions.  The
our purpose, the trained neural network can be point of Figs. 6 and 7 is simply to validate the basic
considered as a "black box" prediction method for the indicial theoretical frame work, Eq. (2).
time-dependent loads and pressure distributions.  This
black box prediction is an accurate representation of 5.4.  Indicial Model Prediction
the flow within a reasonably wide parameter space,
and it is assumed that the flow responses predicted by The true test of the indicial method lies in the ability
the model are "as good" as if they were directly to predict unsteady aerodynamic responses for
measured in wind tunnel tests.  completely new maneuvers.  To achieve this, the

5.3.  Indicial Model Validation given maneuver are approximated based on a finite set

There are two levels of testing of the indicial
theoretical prediction.  The first level (referred to as
"validation") involves reproducing the very maneuver
from which the indicial and critical-state responses
were determined, prior to the indicial step.  This so-
called validation exercise examines the feasibility of
smoothly blending a finite number of discrete indicial
functions to predict the unsteady aerodynamic
response in the case where the indicial responses are space.  The studies of Refs. 1 and 2 have shown that,
known exactly.  By "known exactly" we mean that
there is no error or uncertainty in the indicial function
due to effects of prior motion history.  By contrast,
the indicial model prediction (Section 5.4) tests the
accuracy of the prediction for novel maneuvers.  This
prediction is based on a finite number of prerecorded
indicial and critical-state responses which do not share
the same prior motion history as the maneuvers to be
predicted.

An example of indicial model validation is shown in
Figs. 6 and 7, corresponding to the Goman-Khrabrov
and neural network systems, respectively.  In Fig. 6,
the data are the �C  prediction of the Goman-z

Khrabrov model for a large amplitude Cobra
maneuver over approximately six seconds (see
Ref. 1).  The indicial theoretical prediction (indicated
by the dashed line) was obtained using 24 indicial
responses.  In Fig. 7, the data are the �C  predictionl

of the neural network for a constant pitch rate
maneuver, �  = 0.04.  In both figures, the quasistatic+

data are indicated for reference.  Note that the near-

function for every 0.275° in �, resulting in an order

S

indicial and critical state responses required during a

of prestored responses.  In the present model, the
prestored responses are required only to have recent
time history characteristics which are similar to those
of the maneuver to be predicted.  For motions �(t)
which are sufficiently smooth, the indicial function at
time ) can be appropriately characterized using the
instantaneous values of , etc.  Thus,
a central issue is to determine what constitutes an
efficient parameterization of the indicial function

for both the Goman-Khrabrov system and the neural
network system, the indicial function space can be
appropriately parameterized using only  and .

Figures 8 and 9 indicate in parameter space the
location of the indicial and critical state responses
used for prediction, relative to the trajectories
associated with various novel maneuvers.  In Fig. 8
(Goman-Khrabrov model), 15 indicial responses have
been precomputed, each corresponding to a constant
pitch rate prior motion history (dotted lines).  Figure 9
depicts the parameter space for the neural network
system.  In this case, the indicial prediction is based
on 38 prerecorded indicial functions and three
prerecorded critical state responses.  Each response
corresponds to a nominally constant pitch rate prior
motion history (�  = 0.02, 0.04, or 0.06).+

The respective indicial theoretical predictions are
shown in Figs. 10 and 11.  In each case, both the
indicial responses and the critical-state responses are
functionally interpolated in  parameter space,
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based on the precomputed nodal responses.  Note that
the prediction of the load build-up (�C  for Goman-z

Khrabrov, Fig. 10, and �C  for the neural network,l

Fig. 11) for a novel maneuver is a completely "hands-
off" process: it does not require any prior knowledge
of the critical-state response associated with that
particular maneuver, nor does it require any
knowledge of any of the indicial functions associated
with it.

5.5.  Discussion

Successful application of the nonlinear indicial
method to both Goman-Khrabrov and neural network
systems suggests that indicial theory, coupled with
appropriate multivariate functional interpolation
methods, could be used as a high angle-of-attack
prediction method.  In the study of Ref. 2 the indicial
method was shown  to be significantly more accurate
than aerodynamic derivatives-based methods, which
are not appropriate for true unsteady maneuvers,
particularly when critical states are encountered.  The
method is also considerably faster than CFD since it
involves only functional interpolation and the
calculation of a generalized convolution integral.
Thus, it has potential for future flight simulation
applications.

6. DETERMINATION OF NONLINEAR
INDICIAL AND CRITICAL STATE
RESPONSES

One of the critical aspects of a nonlinear indicial
prediction model is the availability of indicial and
critical state responses.  In the examples described in
Section 5, the task of obtaining these responses was of n indicial responses requires that n independent
greatly facilitated by the nature of the models being maneuvers be performed, and results in a linear
considered, whether analytical (the Goman-Khrabrov system of simultaneous equations.  If, additionally,
system) or numerical (the neural network system).  In
practice, when dealing with experimental data
(whether from wind tunnels or flight tests) the indicial
and critical state responses are not readily available.
Furthermore, the very nature of current dynamic wind
tunnel tests is often ill-suited to the determination of
these responses.  The present Section describes some
recent progress in the area of nonlinear indicial and
critical state response extraction from aerodynamic
databases.

Traditional methods of determining indicial responses
include the direct method (described below), the
Laplace domain method, and optimization/parameter

identification methods.  The direct method is based on
strict adherence to the definition of the indicial
response as a Fréchet derivative, Eq. (3).  It involves
performing a small step at some point in the
maneuver.  This method was used for the nonlinear
problems described in Section 5.  The Laplace method
(Refs. 19,20) approximates the indicial response by
taking an inverse Laplace transform after performing
smooth approximations to a finite size step.  This
allows the alleviation of some of the difficulties
associated with otherwise infinite accelerations.9

The direct method and the Laplace domain method
are similar, in the sense that they require that step or
step-like maneuvers be specifically carried out for the
purpose of determining the indicial response.  By
contrast, optimization/parameter identification methods
rely on the frequency scaling of the responses to infer
the parameters of the indicial response (see, e.g.,
Ref. 21).  This does require, however, that a certain
form for the indicial response be assumed a priori, for
instance, in potential flow, Theordorsen functions and
the like.22

An alternative to these methods has recently been
developed at Nielsen Engineering & Research.  This
alternative scheme uses projection methods, which
result in the simultaneous solution of multiple
nonlinear indicial and critical state responses.  A key
advantage of the new method is that it requires no
prior assumptions about the functional form of the
indicial or critical state responses and, most
importantly, does not require that the maneuvers
approximate steps.  In the case where the maneuvers
start from rest (start-up maneuvers), the determination

p critical state responses must be extracted, then a
total of on the order of n+p maneuvers is required;
however, this time, the system of equations is a priori
nonlinear.  In the particular case where the motions
are periodic, a somewhat larger number of "training"
maneuvers is required, and the answer (i.e., the
solution vectors for the indicial and critical state
responses) becomes approximate.

To illustrate how the method works, consider the
following synthetically constructed nonlinear system.
The input is the angle of attack, �(t).  The output
simulates an aerodynamic load and is denoted f(t).  It
is assumed that the system is described exactly by a
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nonlinear indicial model with no critical state.  The The training data set is generated by the nonlinear
indicial responses at both ends of the interval (f  at model, and consists only of periodic roll motions1,�

� = -1 and f  at � = +1) are chosen to be -(t) = -  + - sin(kt), a subset of which is shown in2,�

exponentials and are shown in Fig. 12.  The system is Fig. 16.  In this figure, f designates the simulated
initially at rest (� = 0, �f = 0) and at time t = 0 a aerodynamic load (in this instance, a scaled
sinusoidal motion begins. Figure 12 shows that, using representation of the rolling moment).  The training
two such maneuvers, one can recover the nodal data set consists of two groups of maneuvers: one
indicial responses f  and f  almost exactly.  The centered at -  = 0° and one centered at -  = 3°.  In1,� 2,�

accuracy of the indicial functions is confirmed by the the first group, the maneuver amplitudes are ±2°, ±3°,
good agreement between the indicial theoretical and ±4°.   In the second group, the maneuver
predictions �f  and �f  (obtained using the amplitudes are ±2°, ±3°, and ±5°.  For each1,p 2,p 

extracted indicial responses) and the "data" �f  and amplitude, hysteresis loops may be available at as1

�f  (constructed using the theoretical indicial many as eight reduced frequencies: k = 0.010, 0.021,2

responses). 0.031, 0.042, 0.052, 0.073, 0.084, and 0.105.

The second example (also based on synthetic data) is The result of the extraction procedure is shown in
described below and corresponds to the simultaneous Fig. 17, where the seven simultaneously extracted
extraction of seven responses: five nonlinear indicial nonlinear indicial and critical state responses are
responses and two critical state responses.  This compared to the theoretical ones.  There is good
synthetically constructed nonlinear system was agreement between the two.  Note that the noisy
designed to mimic the rolling moment coefficient aspect of the extracted responses is a consequence of
response of a 65° delta wing undergoing forced roll the large numerical stiffness of the systems being
oscillations.  (This synthetic example is an solved.
intermediate step towards the application of the
extraction method to the analysis of Wright An alternative measure of the accuracy of the
Laboratory's 65−degree delta wing database. extraction process is to use the extracted indicial and6,7,23-25

Specifically, the subcase being simulated corresponds
to small amplitude oscillations in the range
− 4° ≤ - ≤ 8°, for a support sting angle of 30° and at 

a freestream Mach number of three tenths.  Static data
taken at fine roll increments (see Refs. 7,25) suggest
the existence in this range of critical state transitions
at - = 5.20° and - = 4.67° for increasing and
decreasing -, respectively (see Fig. 13).

The real data is idealized using a nonlinear indicial
model, which is illustrated in Fig. 14.  It is this
idealized model which is used to generate the training
data (hysteresis loops) for the extraction method.  In
this manner, one can compare the extracted indicial
and critical state responses to the actual (theoretical)
ones, which are known in this case.  The nonlinear
indicial response model shown in Fig. 14 is based on
a parameterization by - only, with nodal indicial
responses defined at roll angles equal to − 4°, −1.3°, 

1.6°, 5°, and 8.6°, respectively.  Two jump responses
are defined at the crossing of critical states, at
-  = 5.2° (for increasing -), and at -  = 4.7° (forCS CS

decreasing -).  The various time constants were
chosen so as to qualitatively reproduce some of the
actual hysteresis loops recorded in this roll angle
range (see, e.g., Fig. 15).

0 1 

0 0

critical state responses to predict the hysteresis loops
associated with novel maneuvers.  For example, let us
consider the prediction of large amplitude maneuvers
(- = 2° ± 8°).  Furthermore, let us use frequencies
that were not used in the training data, e.g.:
k = 0.0027, 0.0067, 0.0267, and 0.1467.  Note that, of
the four reduced frequencies, only one (k = 0.0267) is
within the range of frequencies used in the training
procedure.  For the other three, the method effectively
functions in extrapolation mode.  The result of the
prediction is shown in Fig. 18.  The method is seen to
accurately predict the hysteresis loops at all
frequencies.  Only the highest reduced frequency
(k = 0.1467) is affected by high-frequency noise  or
error.  At least part of this error is due to the noisy
nature of the extracted responses; the other component
is systematic error which appears at high frequency
when using a fixed integration time step.  The results
shown in Fig. 18 correspond to the case where only
22 (of the possible 48) maneuvers were used as part
of the training.  Similar agreement was obtained with
31 and 48 maneuvers.  The accuracy was found to
degrade when using fewer frequencies.  For example,
with only nine training maneuvers, an average error of
10% was incurred in the prediction.
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7.  SUMMARY 5. Nixon, D.:  Alternative Methods for Modeling

Nonlinear indicial response theory addresses the need
for high-fidelity prediction of nonlinear unsteady
aerodynamic characteristics.  Several application
examples are presented, including the simulation of a
fighter aircraft performing Cobra-type maneuvers, and
a neural network simulating wing stall during pitch up
maneuvers.  Because of the analytical and numerical
nature of these models, a direct determination of the
nonlinear indicial and critical state responses was
possible.  However, the validation of the nonlinear
indicial model using existing experimental data
requires the use of specialized extraction/identification
techniques.  In this case, it may be possible to infer
the nodal and critical state responses using a training
data set.  The inference mechanism thus uses a
methodology which bears some similarity with the
training of a neural network, although any further
connection remains to be explored.  One essential
difference between neural networks and the present
indicial theoretical model is the potential of the latter
to be physics-based, since the nonlinear indicial
response can be derived under certain conditions26

from the Navier-Stokes equations.
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Fig. 7. Lift Indicial Theoretical Prediction Versus
Data, �  = 0.04 (Ref. 2).+

Fig. 4. Schematic Illustrating the Rectangular
Wing Used to Train the Artificial Neural
Network. (from Ref. 17).

Fig. 6. Hysteresis Plot of Indicial Theoretical
Prediction Versus Data (Large Amplitude
Cobra Maneuver, Ref. 1).

Fig. 5. (A) Schematic of the Neural Network
Architecture.  (B) The Operational Neural
Network Following Training (Fixed
Weights).  (Adapted from Ref. 18, with
permission).
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Fig. 8. Illustration of Maneuver Trajectories in
Parameter Space (Ref. 1).  Open symbols
indicate the location of the nodal indicial
functions.

Fig. 11. Nonlinear Indicial Prediction (Symbols)
Versus Data (Lines) for Two Novel
Maneuvers (Ref. 2).

Fig. 9. Parameter Space Representation of Two
Novel Maneuvers Illustrating Their
Trajectory in Relation to the Location of
the Nodal Indicial Responses (Ref. 2).

Fig. 10. Nonlinear Indicial Prediction Versus Data
for Novel Maneuver (Ref. 1).

Fig. 12. Comparison of Predicted Aerodynamic Response �f (�) Versus Actual Response �f (Left: 3 = 5 /6,p

Right: 3 = 2 ).  Theoretical (dotted line) and extracted (solid line) responses are superposed in each inset.
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Fig. 14. Nonlinear Indicial Model Constructed
Using Five Nodal Indicial Responses (Roll
Angles - , - , - , - , and - ), and Two1 2 3 4 5

Critical State Responses (CS  and CS ). 1 2

(The thick solid line represents the
quasistatic response).

Fig. 13. Time-Averaged Static Rolling Moment
Coefficient for both Increasing and
Decreasing - (from Ref. 25).

Fig. 15. "Synthetic" Hysteresis Loops (Right) Constructed Using the Model of Fig. 14, Versus Actual Hysteresis
Loops (Left, from Ref. 25) for the Dynamic (Total Minus Static) Rolling Moment Coefficient for Harmonic
Oscillations Centered at -  = 0°.  (Top: k = 0.02, bottom: k = 0.04).0



0 1 2 3 4 5

-1

0

1

2

3

t

Theoretical

Extracted

φ1 = -4°

φ2 = -1.3°
φ3 =  1.6°

φ4 =  5°

f,φ

0 1 2 3 4 5
-3

-2

-1

0

1

2

3 Theoretical

Extracted

φCS = 5.2°

φCS = 4.7°

t

φ5 = 8.6°

f,φ, ∆f CS

-4 -2 0 2 4 6 8

-4

-2

0

2

4

6

8

10

f
k = 0.010

k = 0.031

k = 0.105

k = 0.010

k = 0.042

k = 0.042

k = 0.042

φ

static

nodal IR

static

nodal IR

-5 0 5 10
-10

-5

0

5

10

PREDICTION

DATA

-5 0 5 10
-10

-5

0

5

10

PREDICTION

DATA

-5 0 5 10
-10

-5

0

5

10

PREDICTION

DATA

-5 0 5 10
-10

-5

0

5

10

STATIC

φ

f

k = 0.0027

k = 0.0067

k = 0.0267
k = 0.1467

-13-

Fig. 17. Comparison of Extracted Versus Theoretical
Indicial and Critical State Responses.

Fig. 16. Example of Training Data Subset Constructed
Using the Model of Fig. 14.

Fig. 18. Indicial Theoretical Predictions (Dashed Lines) Versus Data (Solid Lines) for Four Novel Maneuvers. 
(Number of maneuvers in the training set is 22).


