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ABSTRACT

Three local spectral estimation schemes were compared for
their ability to accurately detect the presence of excess
energy in high frequency modes lying outside the accuracy
bandwidth of a given discretization scheme: the windowed
Fast Fourier Transform (FFT), the Discrete Wavelet
Transform (DWT), and the Maximum Entropy Method
(MEM).  Systematic deterministic and statistical tests were
carried out, indicating the MEM to be the most accurate.
An MEM-based on-the-fly grid refinement / derefinement  

scheme was developed.  Its capabilities are demonstrated in
terms of local grid refinement, local grid coarsening, and
dynamic adaptation.

NOMENCLATURE

A Input Amplitudei 

A Output Amplitudeo

A /A Amplitude transfer functiono i

c Airfoil chord
DWT Discrete wavelet transform
e Internal energy
FFT Fast Fourier transform
fv Finite volume
m Number of points in data record
M Mach number
MC Macrocell
MEM Maximum entropy method
opt Optimized
p Pressure
PDF Probability density function
Q Solution vector
r Radius
Re Reynolds number (Re = U c/�)∞ 

S(3) Power spectral density
t Time
u Streamwise velocity

U Freestream velocity∞

UMC Unstructured MacroCell
v Normal velocity
v Tangential velocity�

w Spanwise velocity
x Streamwise coordinate
y Normal coordinate
z Spanwise coordinate
� Circulation
�x Grid spacing
� Wavelength
# Fluid density
3 Angular frequency
3 Energy cutoff frequencyc

3 Filter cutoff frequencyF

3* Bandwidth of numerical scheme
2 Vorticity
� Kinematic viscosity
� Grid stretching parameterx

%E Percentage energy above 3>3 c

~ On the order of
<   > Mean 

1.  MOTIVATION AND BACKGROUND

Although the need for a high quality driver for grid
enrichment exists in a number of computational disciplines,
the primary motivation behind this study was the
development of an advanced adaptive computational fluid
dynamics (CFD) methodology for predicting the
phenomenon of dynamic stall.

A number of studies in recent years (for example, Ref. 1)
have focussed on the proposition that the genesis of
dynamic stall is associated with an extremely thin vorticity
spike which forms within the unsteady leading edge
boundary layer.  This possibility has driven the needs of
Eulerian-based CFD methods towards ever greater mesh
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refinement levels (Refs. 2,3).  Using present CFD methods
and computers, the highest achievable chord Reynolds
number is estimated to be around Re = 100,000 (Ref. 2), a
factor of 40 from what is needed for full-scale rotorcraft
simulations.  Converged calculations of an impulsively
started dynamic stall problem have been carried out (Ref. 3)
up to Reynolds numbers of 800,000.  However, achieving
this result required a combination of extreme grid clustering
and a very high-accuracy (8 -order) CFD algorithm.th

These facts led to the belief that full-scale Navier-Stokes
simulations of dynamic stall might be achievable in two
dimensions, provided the computational prediction tool
incorporates both adaptive mesh refinement and high-
accuracy algorithms.  Achieving these two properties
simultaneously and efficiently was the basis for the
development of a new CFD methodology, the Unstructured
MacroCell (UMC) method (Ref. 4).

The UMC concept (Ref. 5) utilizes a nested structure
consisting of coarse unstructured ªmacrocellsº and, within
each macrocell, a fine structured grid.  The unstructured
nature of the grid at the macrocell level gives the method
geometric flexibility, while the element of structure, at the
microcell level, allows the use of high-accuracy algorithms.

While a good dynamic adaptive solver is an essential aspect
of an accurate CFD method for dynamic stall, its ultimate
success hinges on the development of mesh enrichment
indicators which enable the grid refinement to ªstay aheadº
of a nonlinear solution which is generating finer and finer
scales.

Grid refinement indicators typically rely on gradient-like
quantities of the type D#/Dt or ∇#.  Such indicators are
inappropriate for the onset of dynamical stall, which
manifests itself with initially weak high-frequency vortical
flow features (for instance, the occurrence of a subboundary
layer scale vorticity spike).  Low-order CFD methods are
unable to pick up these initially low-energy, high-wave
number phenomena and, hence, subsequent grid refinement
may never occur.

2.  OBJECTIVE 

For a given spatial discretization scheme, numerical error
can be identified by the presence of energy in high
frequency modes lying outside the accuracy bandwidth of
the discretization scheme (Figure 1).  The objective of this
study was to evaluate practical criteria for on-the-fly
spectral error estimation.  The connection between gradients
and high frequency is imprecise, as steep straight lines are
resolved perfectly by even a first-order scheme.  The goal,
therefore, is to find a method which is wave number-based,
allowing the accurate detection of energy outside the
accuracy bandwidth of the CFD algorithm.  By considering

the local spectral content of the solution and its grid
metrics, sharp grid refinement / derefinement indicators can  

be developed based on sound scientific principles.

 Fig. 1. Discretization Error Versus Wave Number for
Two- and Four-Point Finite-Volume Taylor
Series, and Eight-Point Optimized
Approximations of the Convective Fluxes,
from Reference 6.

3.  METHOD

To solve the Euler or Navier-Stokes equations on a
curvilinear grid, the governing equations are subjected to a
generalized coordinate transformation from physical space
(x,y,z,t) to computational space (�,�,,)).  Due to the
transformation, the flow equations 

are modified by numerous grid metric terms and may be
rewritten as

where the contravariant quantities  are defined
as

and  is the Jacobian of the metric transformation.

The basic idea is that a numerical solution on a grid is
spatially well-resolved if all of the energy in the
contravariant fluxes is within a frequency band
0 ≤ 3 ≤ 3*.  This frequency band must be associated with
the wave numbers which are accurately resolved by the
given numerical scheme.  For example, Figure 1 shows
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how an optimized eight-point finite-volume scheme is
accurate up to almost half of the resolvable wave number
range (3  = !).  By contrast, a fourth-order schemeNyquist

accurately resolves only approximately 20% of that range.
This number drops to less than 3% for a conventional
second-order scheme.

Note that  and  are made of multiplicative terms
containing both the fluxes and the grid metrics.  It may be
shown, therefore, that the bandwidth 3* is the sum of the
bandwidth of the metrics and the bandwidth of the solution
fluxes.  For the present purpose, we are interested in
detecting the presence of energy in the high frequency
modes of  and , consistent with the spectral
characteristics of the discretization scheme being used.

The focus of the methods described below is the evaluation
of local spectral characteristics based on local (i.e., short)
data records.  The objective is to produce a measure which
can be used for subsequent grid refinement / coarsening.   

The first method that was considered is the Fast Fourier
Transform (FFT).  The advantages of this method are that
the errors associated with FFT are well-understood and a
number of efficient algorithms have been developed.  The
main difficulty with the Fourier transform is its poor
spectral definition when there are limited amounts of data.
The underlying assumption of stationarity of the input
signal requires that periodic windowing functions be used.
The performance of the FFT was documented and compared
for five different types of windowing functions (rectangular
(implicit), Hanning, Hamming, Bartlett, and Welch).  In all
cases, the spectral estimates (even for monochromatic data)
are broadband once the size of the input of data stencil is
less than 20.

The Maximum Entropy Method (MEM) of spectral analysis,
on the other hand, produces sharply defined peaks from as
little as five data points.  The development of the MEM is
attributed to Burg (Ref. 7).  Entropy, in the information
theory sense, is a measure of unpredictability (noise) in a
given process.  Concepts of maximization of the
information entropy, consistent with the measured lags of
the autocorrelation function can be used to produce a
minimum phase inversion filter which maximizes the
amount of "self information."  The MEM was first
developed in the fields of astrophysics and geophysics
(Ref. 8), where it proved to be a powerful tool, particularly
in cases where very limited amounts of data are available.
A comparison of MEM and FFT spectra for a truncated
monochromatic signal is shown in Figure 2.

Fig. 2. Power Spectral Density of a Fifteen-Point 

Truncated Sinusoid Computed by FFT and
MEM.

The third method that was investigated in this study is the
Discrete Wavelet Transform (DWT).  Like the FFT, the
DWT can be thought of as an efficient algorithm to
decompose an input signal onto a basis of orthogonal
functions.  In the case of the FFT, the basis functions are
sines and cosines.  In the case of the DWT, they are
functions with compact (finite) support referred to as
wavelets.  The wavelet transform has received much
attention in the past decade, mostly because of its ability to
represent signals in a compressed form.  Thus, it has been
the basis for numerous data compression algorithms, and
even new solution algorithms for large linear systems of
equations (Ref. 9).  In the present study, two classical sets
of wavelet filter coefficients were used.  These filter
coefficients are referred to as Daubechies−4 and
Daubechies−20.

Fig. 3. Discrete Wavelet Transform of a Pulse Using 

Daubechies-4 Wavelets.

To illustrate how the method works, consider the example
of Figure 3.  In this example, the input signal (2048 points
shown in the inset) is a single short pulse.  The output of
the DWT is divided into binary segments (top segment:
1025 through 2048, next segment: 513 through 1024, next
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segment: 257 through 512, and so on).  The top segment
corresponds to the finest scales (i.e., no decimation of the
input signal), while consecutive segments to the left are
associated with successive decimations of the input signal
by a factor of two each time.  Note that in each segment,
the response is compact (unlike the Fourier transform of a
pulse, which is broadband) and localized (like the data
itself).  Within each segment, the pulse-like response may
be thought of as a mirroring of the original pulse, viewed
through the filter of self-similar wavelets of various scales.

In order to reduce the output data and to be able to
compare the DWT results against FFT and MEM, the
following operations were performed: (1) the peak response
in each segment is recorded (i.e., we are not interested in
localization), and (2) each segment is assigned an
equivalent "frequency."  Based on the pulse analogy, the
finest scale segment is assigned the Nyquist frequency,
3 = !, the next segment is assigned the frequency
3 = !/2, the next one 3 = !/4, and so forth.

4.  SPECTRAL ESTIMATION RESULTS

By analyzing the power spectral estimates of truncated
sinuoids and pulse functions computed using the FFT,
MEM, and DWT methods, the following observations were
made.

The main problem associated with the FFT is the excessive
"leakage" from one frequency bin to the next when dealing
with small data records.  The windowing operations are
designed to minimize this well-known phenomenon.
However, they are still inadequate for the extreme
conditions being considered here (on the order of 10 data
points or less).  By contrast, the MEM spectra tend to have
sharply delineated peaks and have arbitrarily fine resolution.
These are valuable qualities for discrete spectra.  On the
other hand, the peaky nature of the MEM spectra may lead
to unrealistic estimates for processes which are broadband
in nature.  Whether a spectrum based on a few points
should be discrete or broadband is an academic question.
In fact, the very meaning of a frequency spectrum under
these conditions is unclear.  It is, perhaps, easiest to think
of these operations (FFT/MEM/DWT) as filters.  Each of
these filters has its own characteristics.  Which
characteristics are most useful for the purpose at hand is
what must be assessed.

Recall that we are interested in estimating locally the
amount of energy contained in wave numbers which exceed
the bandwidth of the particular spatial discretization scheme
being used.  Assuming the discretization scheme to be
accurate up to 3 = 3*, a measure of the error is

where S(3) is the power spectral density.  Alternate
measures  can also be introduced very simply by weighing
the power spectral density based on the accuracy curve of
the discretization scheme (see, e.g., Figure 1).  Examples
of %E  calculated by the three methods on a single data>3

stencil are given in Figures 4 and 5.

Fig. 4. Percent Energy Above 3 , Calculated Based c

on FFT, MEM, and DWT Spectral Estimates.
(The input signal is a 10-point pulse shown in
the inset.)

Fig. 5. Percent Energy Above 3 , Calculated Basedc

on FFT, MEM, and DWT Spectral Estimates.
(The input signal is the 10-point truncated
sinusoid shown in the inset.)

For a given cutoff frequency 3  (typically chosen to bec

equal to 3*), widely different values of the error are
obtained, depending on the method used for spectral
estimation.  In order to answer the question "Which method
is best suited for local error estimation?" one should,
ideally, know what the true spectrum is.  As previously
mentioned, for short data records there is no exact answer
against which to compare.  Thus, an alternate methodology
must be used.
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The basic idea behind the alternate testing methodology is Since the ideal filter (FFT, MEM, or DWT) is one that
to compare the statistical properties of %E  against the>3

true spectrum, obtained from long data records.  Consider,
for instance, a data record that is sufficiently long, so that
its statistical and spectral properties are known with good
precision.  If the same data record is now segmented into
small independent stencils (say, on the order of 10 points),
the values of %E  from spectral estimates based on each>3

individual stencil will follow a certain probability
distribution.  Figure 6, for instance, depicts the normalized
Probability Density Functions (PDF) of %E  for the FFT,>3

MEM, and DWT methods, in the case of filtered white
noise (spectrum shown in the inset).

Fig. 6. Probability Density Distributions of the 

Percentage of Energy Above 3  = 1.4.c

(Asymptotic long record spectrum shown in
the inset.)

The PDFs plotted in Figure 6 represent the probability
distribution for the percentage of energy above 3  = 1.4.c

This probability is obtained from the analysis of 50,000
short (m = 11 points) data records. The expected value of
%E  (in the asymptotic limit of a long, continuous record)>3

is obtained from the integral from 1.4 to ! of the curve
shown in the inset: %E  ≈ 7.1%.  For comparison, the>3

averages obtained from the PDFs are: <%E >  ≈ 31.9%,>3 FFT

<%E >  ≈ 5.9%, and <%E >  ≈ 52.9%.>3 MEM >3 DWT

Tests like the one depicted in Figure 6 have been repeated
for many input signals and with various integration cutoff
frequencies 3 .  Typical results are shown in Figure 7.c

The curve labeled "exact" corresponds to the asymptotic
expected value of %E .  Note that, in comparing>3

<%E > , <%E > , and <%E >  to %E , an>3 FFT >3 MEM >3 DWT >3

implicit assumption is made that the average value obtained
from the short data records should tend towards %E .>3

This is an imperfect assumption at low frequencies, since
low frequencies are not represented in the short data
records.  However, for the high frequencies (say,
3 > 2!/m) this assumption ought to be valid.  By making
this assumption, the results of our tests indicate that the
Maximum Entropy Method is the closest to being
statistically correct.

must sharply discriminate the presence of spectral energy
around a given frequency (typically equal to the accuracy
bandwidth, 3*), the Discrete Wavelet Transform appears to
be too coarse a tool in practice.  Also, because of frequency
leakage, the FFT-based results are inaccurate.  The most
promising method, therefore, is a filter based on MEM
spectral estimation.

Fig. 7. Average Percentage of Energy Above 3 , c

Based on FFT, MEM, and DWT Methods.
(Input data is made of 11−point stencils of a
low-pass filtered random process; filter
frequencies: 3  = 2.3 (top) and 3  = 1.3F F

(bottom).)

Note on the Use of Artificial Dissipation

Before proceeding with documenting the performance of
MEM filtering on known fluid dynamical problems,
however, one must consider how this method will be used.
For a given discretization scheme, the spectral accuracy can
be determined very precisely (see, e.g., Figure 1).  Without
grid adaptation, the appearance of energy outside the
accuracy band 0 ≤ 3 ≤ 3* is usually suppressed through
the use of artificial dissipation.  For  instance, Childs
(Ref. 6) has shown how high-order artificial dissipation
schemes could be carefully tuned to match the spectral
characteristics of a given discretization scheme.  The basic
idea behind the use of artificial dissipation is to smooth the
solution sufficiently, so that its accuracy is consistent with
the discretization scheme, given a particular grid.  However,
in the case where grid adaptation is an option, the
appearance of high-frequency energy can be treated in one
of two ways.  The first is to add artificial dissipation in the
manner described above.  The second, rather than to
suppress the high frequencies, is to refine the grid so as to
resolve them, by effectively shifting the energy to lower,
accurately resolved frequencies on the new grid.  The latter
approach is the most accurate for detecting and capturing
the formation of gradients within the flow.  However, it is
not realistic to consider ‘doing without’ artificial dissipation
altogether.  Instead, the best approach is to minimize the
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amount of artificial dissipation, perhaps tailoring it to kick Figure 9 presents the resulting values of <%E >  and
in at higher frequencies, and use a measure such as
(%E )  to drive grid refinement.  Whatever the strategy,>3 MEM

the artificial dissipation itself may be used as a measure of
the error.

An example of the characteristics of a high-order artificial
dissipation scheme is given in Figure 8.  This 10-point
scheme is designed to leave the frequencies below 3*
essentially unaltered, and to act on the modes whose
frequency exceeds 3*.  The calculation of the artificial
dissipation can be regarded as a high-pass filter operation.
In the case shown in Figure 8, the spectral characteristics
of the artificial dissipation scheme closely match those of
the error of the discretization scheme.  Thus, the artificial
dissipation operation can act as an error estimator which
weighs energy modes in accordance with the accuracy of
the discretization method.  This natural measure of the error
has certain advantages.  Properly normalized, it should be
equivalent to a weighted form of %E .  It is also an>3

inexpensive quantity which is or can be computed on-the-
fly.  As mentioned previously, a detection scheme
combining (%E )  and artificial dissipation is a likely>3 MEM

candidate as a numerical error estimator.  A comparison of
their characteristics is described below.

Fig. 8. Superposed Plot of Discretization Error
(Optimized Eight-Point Scheme) and
Normalized Artificial Dissipation (Optimized
Ten-Point Scheme), from Reference 6.

Suppose the spatial discretization scheme being used is the
optimized eight-point scheme whose characteristics are
depicted in Figure 8.  The useful bandwidth is: 3* ≈ 1.5.
Using low-pass filtered (3 ≤ 3 ) random numbers as theF

input data, statistics similar to those presented in Figure 6
were collected for both %E  and the artificial>3=1.5

dissipation, adiss.  The quantity adiss is the value of the
optimized 10-point artificial dissipation operator whose
spectral characteristics are shown in Figure 8.

>3 MEM

<adiss> when the bandwidth of the input data varies
between 3  = 1.1 and 3  = !; <%E >  is also indicatedF F >3 FFT

for reference.  The resulting curve for both <%E >  and>3 MEM

<adiss> suggests it should be possible to select an
appropriate threshold for grid refinement.  On a logarithmic
scale, the slope characteristics of <adiss> are slightly better
than those of <%E > .  However, an absolute threshold>3 MEM

for adiss may be more difficult to define.

Fig. 9. Mean Percentage of Energy Above 3 = 3c

as a Function of Asymptotic Input Data
Bandwidth 3 .F

5.  GRID ADAPTATION RESULTS

Traditional on-the-fly grid adaptation schemes are not based
on true error estimates.  They are, instead, based on
gradients, and the level of error is unknown.  By contrast,
the candidate methods considered in this study use the
energy content of the contravariant fluxes in the Euler or
Navier-Stokes equations as a local grid refinement indicator.
For a spatial discretization scheme that is accurate up to a
wave number 3 ≤ 3*, the presence of energy above 3*
indicates the need for grid refinement.  The consequence of
grid refinement is to shift the energy in the solution to
lower frequencies which are accurately resolved.
Conversely, the absence of energy above a wave number
3  < 3* signals the possibility of coarsening the gridc

without loss of accuracy.

To test these ideas, we consider the following test problem.
Let v  denote the tangential velocity for a Lamb vortex:�

where r is the radial distance from the core, � is the
circulation, t is time, and � is the kinematic viscosity of the
fluid.  The Lamb vortex is a solution of the incompressible
Navier-Stokes equations representing the decay of an ideal
line vortex (Ref. 10).  The Lamb vortex model also happens
to match reasonably well experimental measurements of tip
vortices associated with the flow over helicopter rotor
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blades (Ref. 11).  In addition to having practical relevance,
the Lamb vortex profile provides a challenging case for the
evaluation of grid refinement schemes.

Consider a one-dimensional cut v(x) across the Lamb
vortex.  Suppose the velocity field is to be solved at
discrete points on a computational mesh.  The unevenly
spaced grid is characterized by a mapping � = �(x) between
physical space (x) and computational space (�).  The grid
density �  represents the number of computational pointsx

per unit x.

At each point on the computational grid, local MEM
spectral estimation is used to obtain the percentage of
energy %E  above a cutoff frequency, 3 .  In this>3 c 

exercise, the percentage of energy is based on a
hypothetical flux term � v (alternatively, � v ).  In thex x

2 

example depicted in Figures 10 and 11, we start with a
coarse uniform grid (�x = 80), resulting in a severely
under-resolved vortex profile (grey line in Figure 11).  The
grid refinement scheme assumes the use of a high-order
discretization scheme, such that 3  = 3* ≈ !/2.  Each timec

%E  exceeds a threshold of 2%, the point is marked for>3

future grid refinement.  The grid refinement strategy is a
two-step process: (1) multiplication of the local �  by ax

mesh concentration factor � > 1, and (2) integration of �x

to produce the new mapping �(x).  The error
estimation/grid refinement sequence is repeated till
convergence is attained, i.e., until the condition %E  < 2%>3

is everywhere satisfied.  The resulting grid density at
successive iterations is shown in Figure 10.  The
corresponding grid layout is shown in Figure 11.  

Fig. 10. Grid Density Plot Illustrating the Convergence 

of the Grid Refinement Procedure for a Lamb
Vortex Profile (3  = !/2, %E  < 2%).c >3

Note that the method was able to pick on a relatively weak
feature of the initial grid (the under-resolved vortex) and
automatically focus in on the vortex.  This is, of course,
exactly the quality that is desired in order to detect the type
of flow features associated with incipient flow separation.

Fig. 11. Evolution of Vortex Profile Resolution Based 

on Spectral MEM Grid Refinement Strategy
(3  = !/2, %E  < 2%).c >3

Fig. 12. Grid Density Plot Illustrating the Convergence 

of the Grid Refinement Procedure for a Lamb
Vortex Profile (3  = !/2, %E  < 10%).c >3

Fig. 13. Evolution of Vortex Profile Resolution Based 

on Spectral MEM Grid Refinement Strategy
(3  = !/2, %E  < 10%).c >3
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On the other hand, suppose a spatial discretization scheme suggests the instability to be caused by the very noise
of lesser accuracy is used, such that 3* ≈ !/4 introduced as a result of the grid refinement
(corresponding, for example, to a fourth-order scheme). implementation.  Recall that the metric term �  is an
Then, for the same energy threshold of 10%, reducing the integral part of the contravariant flux.  Thus, a high
cutoff frequency from 3  = !/2 (Figures 12 and 13) to frequency content of �  may trigger the grid refinementc

3  = !/4 (Figure 14) produces an increase in the gridc

density �  and, correspondingly, a larger number of gridx

points.  This, again, is consistent with the expectation that
lower accuracy schemes require more grid points in order
to accurately resolve the same flow feature.

Fig. 14. Evolution of Vortex Profile Resolution Based 

on Spectral MEM Grid Refinement Strategy
(3  = !/4, %E  < 10%).c >3

❑ At this point, we have shown that the method is
capable of self-focusing, that the amount of resolution
depends on the energy threshold, and that it also
depends on the bandwidth of the discretization scheme.
Additionally, the spectral-based grid refinement
scheme can easily be adapted to any numerical
scheme, by appropriately selecting the cutoff
frequency 3 .c 

As pointed out in the previous section, if the artificial
dissipation filter is finely tuned to match the spectral
 characteristics of the discretization scheme, then the value
of the artificial dissipation itself could also be used as an
appropriately weighted error estimate.  This concept is
illustrated in Figure 15, which uses a 10-point optimized
artificial dissipation scheme as the driver for mesh
refinement.  The scheme is applied to the same vortex
profile as Figures 10 through 14, and the absolute threshold
for grid refinement is set to adiss < 2×10 .-4

While Figure 15 displays some qualitative similarities with
the results presented earlier, the sensitivity to the adiss
threshold was found to be greater.  In particular, above a
certain threshold (~ 5×10 ), no refinement ever took place 

-4 

from the initial coarse grid, while below a certain threshold
(~ 1×10 ) the procedure was unstable.  Anecdotal evidence 

-4 

x

x

indicator, even if v or v  has low-frequency content.  If the2

indicator threshold is sufficiently sensitive, it is possible for
further grid refinement to be triggered purely on the basis
of prior grid refinement at that location.  This ‘runaway
refinement’ could also happen, in principle, with the MEM-
based spectral estimation.  However, this phenomenon has
not been observed in any of our tests.  At this point, the
conclusion is that, although there are some practical
advantages to the use of the adiss parameter, the Maximum
Entropy method appears to be more robust.

Fig. 15. Evolution of Grid Density and Vortex Profile 

Resolution Based on Artificial Dissipation Grid
Refinement Strategy  (adiss < 2×10 ).-4

Fig. 16. Evolution of Shear Layer Profile Resolution 

Based on Spectral MEM Grid Refinement
Strategy  (3  = !/2, %E  < 2%).c >3

Figure 16 is the analog of Figures 10 and 11 in the case of
a hyperbolic tangent shear layer profile.  Again, the initial
grid is uniformly coarse, with �x = 80.  It is hypothesized
that a high-order spatial discretization scheme is used, such
that 3  = 3*  !/2.  The energy threshold is set to

c
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%E  < 2%.  As in the case of Figure 11, the spectral-
>3

based grid refinement method is capable of automatically
focusing the mesh points on the shear layer.  Note also that,
generally speaking, �  in the central region (i.e., either the

x

core of the vortex, or the center of the shear layer) is
smaller than at the edges.  This is a consequence of the
nearly linear form of the profiles in the core and is,
therefore, an indicator of the sensitivity of the method.

Grid Derefinement

The cases presented thus far have considered only the case
of grid refinement.  Equally important to the success of the
method is its ability to coarsen or derefine the grid, as
appropriate.  An example of derefinement is given in
Figure 17.  The derefinement method works as follows.  At
each point on the computational grid, local spectral
estimation by the MEM is used to obtain the percentage of
energy %E  above a frequency 3  = 3*/� (rather

>3 c

than 3*), where � > 1 is a preset relative mesh dilution
parameter.  In the example depicted in Figure 17, the initial
grid is one previously obtained by mesh refinement.  The
subsequent grid derefinement is based on the parameters
3  = !/3 and %E  < 0.7%.

c >3

Fig. 17. Evolution of Vortex Profile Resolution Based 

on Spectral MEM Grid Derefinement Strategy
(3  = !/3, %E  < 0.7%).c >3

Simultaneous grid refinement and derefinement was also
implemented.  In this case, both %E (3 =3*) and

>3 c

%E (3 =3*/�) are constantly monitored.  Points are
>3 c

either marked for future refinement or derefinement.  The
local grid density �  is modified accordingly and integrated

x

to yield the new mapping �(x).  An example of dynamic
refinement / derefinement is given in Figure 18.  As in

  

Figure 11, the initial grid (not shown) is a coarse uniform
grid characterized by �x = 80.  The algorithm parameters
are: 3* = !/2, � = 3/2, and %E  < 2%.  The vortex is

>3

initially centered at x = 0.  After a fixed number of
iterations, the grid focuses on the vortex profile (as in
Figure 11, but with a greater economy of mesh points,
since active derefinement is simultaneously used to
optimize point placement).  The location of the vortex is
then impulsively moved to the right by �x = 10.  After a

few iterations, the grid point clustering is seen to follow the
vortex location as the process continues.

Fig. 18. Illustration of Dynamic Feature-Tracking Using 

an Impulsively Displaced Vortex.  The
Simultaneous Grid Refinement/Derefinement
Strategy is Based on Spectral MEM.

Note that the results presented in Figure 10 through 18 are
based on the detection of high wave number energy in a
�model� contravariant flux, � v.  No equations were actually

x

solved in this case: v(x) is a lookup subroutine.  Thus, in
these examples, there is no feedback resulting from actually
solving for the velocity profile on a given computational
mesh.

Application to Solutions of Dynamic Stall

The above results demonstrate the value of maximum
entropy spectral estimation as a driver for mesh
refinement/derefinement.  The examples considered were
model one-dimensional problems representing profiles
typical of generic fluid dynamical entities: vortices and
shear layers.  In this section, spectral error estimation is
applied to nominally well-resolved numerical solutions of
dynamical stall.

The solution sets are those obtained in a previous study
(Ref. 12) using an eighth-order accurate discretization
scheme with eighth-order artificial dissipation on a fine
structured curvilinear grid in order to achieve grid
independence.  The calculations simulated two-dimensional
unsteady flow separation about the leading edge of a
NACA0012 airfoil at � = 15° angle of attack.  The
freestream conditions for the cases analyzed here were:
M  = 0.2 for the Mach number, and Re = 400,000 for the∞

chord Reynolds number.

Figure 19 is a snapshot of the dynamically developing
vorticity field at tU/c = 0.090.  Application of the MEM
error detection to the streamwise momentum yields contours
of the local spectral error in that variable.  For example,
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Figure 20 depicts contours of streamwise error in #u.
Thus, concentrations of error contours in Figure 20 are to
be interpreted as regions of the solution which are in need
of further grid refinement in the streamwise direction.  The
MEM error contours indicate that the vortices are well-
resolved (something the fine computational grid was
designed to do).  However, further refinement is needed for
the fine scale features of the flow, such as secondary and
tertiary shear layers developing between the vortices.  It is
also interesting to notice that grid refinement is suggested
for the upstream separating shear layer.   This is consistent
with the fact that the fixed grid in this case was designed to
achieve maximum streamwise resolution between
x/c = 0.013 and x/c = 0.047.

Fig. 19. Instantaneous Vorticity Field at tU/c = 0.090,
Re = 400,000, alpha = 15°.

Fig. 20. Contours of Spectral Error Indicating the 

Need for Streamwise Grid Refinement (Cutoff
Frequency: omega  = pi/4).c

The MEM spectral error estimator is seen to perform
similarly well in Figure 21, which corresponds
approximately to the time of formation of the primary stall
vortex.  In Figure 22, the boundary layer flow is fully
attached, and there is no flow reversal.  Yet, the MEM
spectral estimator points to a very specific region of the
flow near the leading edge as being in need of grid
refinement.

Fig. 21. Comparison of Instantaneous Vorticity Field
(Left) and Contours of Spectral Error (Right)
Indicating the Need for Streamwise Grid
Refinement.  (tU/c = 0.051.)

Fig. 22. Spectral Error Contours Indicating the Need 

for Streamwise Grid Refinement at a Very
Early Stage of the Dynamic Stall Process
(i.e., prior to any flow reversal near the
surface; tU/c = 0.015).

6.  SUMMARY

The ultimate success of a dynamic adaptive flow solver
hinges on the development of mesh enrichment indicators
which enable the grid refinement to ªstay aheadº of a
nonlinear solution which is generating finer and finer scales.

This paper describes a novel detection scheme for grid
refinement and derefinement, based on the spatially local
detection of high wave numbers outside the resolved
bandwidth of the CFD algorithm.  Spectral estimation is
carried out on short data records using the Maximum
Entropy method, and one-dimensional examples are shown
for a shear layer and a Lamb vortex, both stationary and
convecting.  The resulting grid resolution is shown to be
dependent on an adjustable energy threshold and on the
bandwidth of the discretization scheme.  Additionally, this
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spectral-based grid refinement method can easily be adapted 11.Leishman, J. G. and Bagai, A.: Challenges in
to any numerical scheme, by appropriately selecting the Understanding the Vortex Dynamics of Helicopter
cutoff frequency .  Finally, the grid refinement indicator was Rotor Wakes, AIAA Paper 96-1957, Jun. 1996. 

applied to two-dimensional numerical solutions of dynamic
stall.  Although these solutions were nominally converged, Dynamic Stall, Nielsen Engineering & Research,
thin regions of discretization error are indicated at the early
stages of flow separation.

The issue of whether or not sufficient grid resolution was
applied in the calculations of References 3 and 12 will be
reexamined using the new Unstructured MacroCell code
presently being developed (Ref. 4).
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