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Abstract

Preliminary results are presented from application of 
implicit integration schemes to high-accuracy CFD
methods. High-accuracy refers to spatial discretization
methods which are optimized for spectral bandwidth,
rather than order of accuracy based on a Taylor’
series expansion. The results show that reductions of
more than 90% in computational effort, as measured
by CPU time, can be achieved. The reduction is
relative to second-order methods for obtaining steady
solutions to the same level of accuracy. In addition, a
variety of time integration methods have been
evaluated for their use in time-accurate and steady-
state simulations with the high-accuracy central
difference schemes.

Introduction

The ability of high-order and high-accuracy
discretization schemes for CFD to better resolve flow
physics has been demonstrated by many researchers,
e.g., Rangwalla and Rai  and Treidler and Childs.  In1 2

previous work by the authors,  it was demonstrated2

that high-accuracy centered discretization schemes for
CFD allowed an increase of a factor of four in the
grid spacing required for a given solution accuracy,
relative to second-order methods. However, the
savings in CPU time through the use of fewer grid
points were almost completely offset by the
inefficiency of the explicit solution methods used for
time integration. The purpose of this work is to
evaluate implicit solution methods for high-accuracy
central difference schemes.

High accuracy, as used here, is not a synonym for
high order. High-order accurate discretization schemes
based on Taylor series expansions are designed to
perfectly represent as high an order of polynomial as
possible, e.g., a five-point method will represent a
fourth-order polynomial exactly. For infinitely small
errors, the n-point Taylor series discretization gives
the smallest possible error for a given stencil size.
However, infinitely small errors are rarely achieved in

CFD. A more useful criterion is to force the errors to
be practically zero for as large a wave number as
possible. High accuracy is defined here to mean
discretization schemes where the wave number below
which a scheme does not exceed a given error level is
maximized. The optimized compact schemes
described by Lele  are another example of optimized3

methods.
The motivation for using high-accuracy/order

schemes is to reduce the computational effort required
to obtain a given level accuracy for a flow of interest.
The ability of these schemes to reduce the number of
grid points required for accurate solutions by orders of
magnitude has been demonstrated.   What remains is2

to develop efficient solution methods for steady and
unsteady flows which will translate the orders of
magnitude reductions in grid points into orders of
magnitude reduction in CPU time required to obtain
an accurate solution.

Solution algorithms for both steady and unsteady
flows are considered in this work. Steady flow
solution algorithms can be efficiently extended to
unsteady cases through the use of dual time-
stepping.  Dual time-stepping is a well-established4,5

technique which can be used for time-accurate
solutions with high spatial accuracy methods.

In this paper, the properties of a variety of implicit
solution methods are briefly described.  The properties
of these methods are then evaluated through the use
of two simple problems.  Finally, some results from
an improved version of the high-accuracy CFD code
from Treidler and Childs  are presented to show2

dramatic reductions in the required CPU time for
accurate solutions, relative to typical second-order
methods.  These reductions have been achieved
despite using second-order implicit solver, rather than
an implicit solver which is matched to the order of the
explicit residuals. 
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Description of Solution Algorithms

Numerical approximations to the nonlinear Euler
equations give rise to dispersive errors. For central
difference schemes, the dispersive errors are
contributed mostly by the third derivative terms of the
modified equation. It is, therefore, natural to use
algorithms which have spatial order of accuracy four
or higher to achieve better resolution and better
dispersive properties required for long time
integration. Implicit time integration with high-order
accuracy in space can be obtained with direct solvers
and application of GMRES methods. A list of
possible time integration schemes for the Euler and
thin-layer Navier-Stokes equations includes: 

1. Explicit and implicit Runge-Kutta methods.
2. The Beam-Warming approximate factorization
scheme.6

3. The diagonalized implicit approximate
factorization (DIAF) scheme.7

4. High spatial accuracy versions of implicit
schemes 2 and 3.
5. Unfactored algorithms.  8,9

6. Implicit Factorized Schemes which utilized
compact spatial differencing

Explicit time integration with Runge-Kutta
methods can provide low dispersion characteristics.10

Global high-order spatial accuracy is obtained when
the residual term is evaluated with a high-accuracy
scheme. However, explicit methods have stability
limitations on time step size. For turbulent flow
calculations, which require very fine meshes, and time
dependent problems with long integration times, the
large number of time steps required result in large
computing times.

Implicit time integration methods are the
alternative to explicit methods. An implicit method
which has been successfully implemented in many
current CFD codes is the alternating direction implicit
(ADI) Beam-Warming  algorithm. This method is6

second-order accurate in space and time. It is an
approximately factorized algorithm and requires the
inversion of block tridiagonal matrices for the sweep
along each coordinate direction. Internal subiterations
may be used during time advancement of the solution
from time level n to the new time level n+1 with
physical time step �t in order to eliminate
linearization and factorization errors, and errors
arising from employing lower order space
discretization in the implicit operators.  The error
introduced by the approximate factorization is

proportional to the CFL numbers along the
transformed coordinate directions and imposes a
limitation on the time step size �t.

The spatial order of accuracy of the implicit
operators of the Beam-Warming algorithm can be
increased to fourth order at the expense of increasing
the bandwidth of the block matrix to five, which will
make the implicit time integration computationally
intensive.

Pulliam and Chaussee  developed a diagonal7

implicit approximate factorization (DIAF) scheme
which requires only  scalar tridiagonal matrix
inversions. The operation count and the memory space
required for the diagonalized algorithm are
dramatically decreased relative to the Beam-Warming
algorithm. However, the diagonal algorithm is only
first-order accurate in time. Second-order accuracy in
time can be achieved by using a dual time step
iteration scheme .11

The accuracy of the steady-state solution obtained
with the DIAF algorithm is determined by the
accuracy of the right hand side residual term. It is
possible to increase the spatial accuracy of the method
just by using high-accuracy methods to evaluate the
explicit residual and retaining the low-order implicit
algorithm.  Alternatively, the spatial accuracy of both12

the explicit and implicit terms can be increased.
Fourth-order accurate implicit central-difference
operators for the DIAF method require inversions of
scalar pentadiagonal matrices.  These inversions are
computationally efficient.

Another possible type of solution algorithm for the
Euler equation uses compact differencing in ADI
schemes. Examples are presented by Abarbanel and
Kumar  and Ekaterineris.  These schemes provide13 14

good dispersion characteristics for long time
integration at a small increase in the computational
effort for the inversion of the implicit operators
relative to second-order methods. Existing codes can
be adapted to use these algorithms with little
modification.

In the rest of this paper, results from sample
calculations will be presented. The dispersive
properties of high-order implicit schemes and their
convergence rates will be compared. Finally, results
from a full CFD code, which show large savings in
CPU time relative to a second-order code, will be
presented.

Results

It is necessary to evaluate the time-accuracy,
efficiency and accuracy of any solution method.  For
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time-accuracy, a good test is to evaluate the compact schemes produced results which were
dispersion characteristics of the methods on a linear identical to plotting accuracy and show good
model problem. Numerical solution of a linear agreement with the exact solution. The solution
problem reveals the potential of the methods while obtained with the first-order accurate in time and
avoiding complicating factors, such as artificial fourth-order in space compact diagonalized algorithm,
dissipation, boundary conditions, and grid metric (C-3), shows a little dispersion compared to the exact
accuracy. solution. The pulse shape obtained by a solution with

For solution efficiency and accuracy, three sets of the standard second-order accurate in space and time
results are presented below.  First, the convergence block tridiagonal Beam-Warming algorithm with
properties of several schemes, as used to determine fourth-order explicit central difference residual
the flow around a NACA-0012 airfoil, are evaluated. evaluation, (C-5), shows the largest variation from the
Results are shown for both subsonic and transonic analytic solution due to the dispersive and diffusive
flow.  Next, a direct comparison is made for the CPU nature of the second-order implicit part of the scheme. 
time required to obtain solutions for inviscid flow
around a circular cylinder.  Finally, the same code
which was used for the cylinder flow, is used to
calculate flow around a NACA-0012 airfoil and the
accuracy is compared with low-order methods.

Dispersive Properties of Time Integration Schemes

The simple model problem is convection of a
Gaussian density pulse. The pulse is described by
#=# + #’ = #  + exp[ -log2((x-x )/c ) ]. The lengtho o

2

scale c is 10. This is a purely linear problem, so
artificial dissipation is not required.  This eliminates
one of the difficulties in evaluating central difference
methods for nonlinear problems, the necessity of
using artificial dissipation to prevent numerical
oscillations.

Central difference schemes are symmetric and
nondissipative. As a result, the dispersion
characteristics of each scheme can be easily studied.
Dispersion characteristics are very important for the
application of the methods to unsteady flow problems
where long time integration is required.

A uniform grid was used for the simulations. The
spacing produced 20 points across the pulse. This is
sufficient to resolve the pulse with both second- and
fourth-order methods.

The density pulse was convected for 50
nondimensional unit lengths. The pulse shape obtained
from the computations with five methods are
compared with the exact solution in Figure 1. Of the
five schemes in Figure 1, four used compact spatial
differencing: the fourth-order accurate in space, block
tridiagonal algorithm of Ekaterineris  (C-1), the14

fourth-order accurate algorithm of Abarbanel and
Kumar  (C-2), the diagonal fourth-order compact13

algorithm of Ekaterineris  (C-3), and the explicit14

four-stage Runge-Kutta method (C-4). For curve C-4,
the inviscid fluxes were evaluated with fourth-order
accurate compact differences. The three nondiagonal

Convergence Rates for Implicit Solution Algorithms

For steady-state solutions, the numerical diffusion
of the Beam-Warming and DIAF schemes is not a
serious handicap to the accuracy of the solution.  This
is because the final solution is determined completely
by the accuracy of the explicit residual terms.  What
will most certainly be affected by the low-order nature
of the implicit schemes is the rate of convergence.

The diagonalized algorithm of Pulliam and
Chaussee,  was used to compute steady-state inviscid7

flow solutions over a NACA-0012 airfoil. For
steady-state computations, first-order accuracy in time
is sufficient, and it is unnecessary to perform time
integration with the second-order accurate in time,
dual time-stepping, diagonalized algorithm. 

Convergence rates for subsonic and transonic flow
solutions obtained by three algorithms are shown in
Figures 2 and 3, respectively. The three shemes are:
the standard, second-order accurate in space
diagonalized algorithm (R2-L2) of Pulliam and
Chaussee,  the fourth-order accurate in space version7

of the diagonalized algorithm (R4-L4), and the
compact, fourth-order accurate algorithm (R4c-L4c) of
Ekaterineris.  The (R4-L4) algorithm is a14

straightforward extension of the (R2-L2) algorithm
and evaluates the residual term with fourth-order
accurate, explicit, five-point stencil, central-difference
formulas and performs the differentiations of the
implicit operators also by using the same fourth-order
accurate central differences. Fourth-order accuracy for
the implicit operators is obtained at an increase of the
computing cost because, in addition to the higher
operation count required for the evaluation of the
spatial derivatives with fourth-order accuracy, a
pentadiagonal matrix inversion is also required. The
fourth-order accurate scheme (R4-L4) has a slightly
better convergence than the standard (R2-L2)
algorithm. The convergence rate obtained with the
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compact, fourth-order accurate algorithm (R4c-L4c) of accuracy convergence of force coefficients. The CPU
Ekaterineris  is also shown. The fourth-order compact times presented for OVERHI include the CPU time14

algorithm achieves a better convergence rate at a for running OVERFLOW to convergence on the same
small increase in the computing cost resulting from grid. OVERHI solutions were generated starting from
the computation of the residual term with compact the converged OVERFLOW solutions. 
finite differences. The implicit inversion of the The contour plots shown below assume a linear
compact (R4c-L4c) algorithm is obtained at the same variation between grid points. The contour lines do
computing cost as the standard algorithm because it not account for the high accuracy of OVERHI.
involves tridiagonal matrices. Consequently, there are cases below where the

Convergence rates obtained for the computation of OVERHI solution on a coarse grid is equivalent to
inviscid transonic flow at freestream speed M=0.8 and that on a finer grid, but the plots show differences in
�=0.1 deg. over the NACA-0012 airfoil with the the contour lines away from grid points on the coarse
(R2-L2) and (R4c-L4c) algorithms are shown in grid.
Figure 3. The trends of the subsonic flow computation
carry over to the transonic flow.  A solution with the Inviscid Flow Past a Cylinder
R4-L4 schemes is not shown because it did not show Inviscid flow past a cylinder was simulated at
improved convergence to steady state. M  = 0.2. Calculations were performed on grids with

Comparison of Accuracy and Computational Effort forand !/128. The grid is a semicircle because symmetry
DIAF and a High-Accuracy Steady-State Scheme boundary conditions are used. The grid extends out

In the results below, comparisons will be made
between OVERFLOW  and the OVERHI code of15

Treidler and Childs.  OVERFLOW is a second-order2

accurate code with many options for time-stepping. In
this case it was used with a variant of the DIAF
scheme. Multigrid acceleration was used in the
OVERFLOW calculations when it provided significant
benefits. OVERHI is a version of OVERFLOW in
which high-accuracy spatial discretization schemes (up
to eight-point stencils) have been implemented for the
evaluation of the explicit residuals. The artificial
dissipation used in OVERHI also uses an eight-point
stencil.

For subsonic flows, the implicit Beam-Warming
approximate factorization method, as implemented in
OVERFLOW, was found to converge quickly to a
steady-state solution when used with five-point stencil
high-accuracy methods for evaluation of the explicit
terms which determine the physics and the eight-point
stencil explicit artificial dissipation. Second-order
artificial dissipation is used for the implicit operator.
Pulliam  has shown that it is critical to match the16

order of the implicit and explicit dissipation models.
This has not been done in OVERHI. Thus, the
OVERHI results for CPU time are far from optimized
and represent a lower bounds on the potential savings
from using high-accuracy methods. 

In the results below, comparisons of CPU times
required to obtain a certain level of accuracy are only
relevant for the inviscid cylinder flows. For the airfoil
flows, the use of low-accuracy c-grid boundary
conditions prevents OVERHI from showing high-

arc-spacings, in radians, of !/8, !/16, !/32, !/64,

thirty cylinder diameters, which is the distance that
was found to eliminate the effect of the characteristic
far-field boundary condition on the force coefficients
for transonic flow. A semicircle grid was used to save
time, but the computed drag coefficient was found to
be the same as when the whole flow was simulated
for both OVERFLOW and OVERHI. The grid
spacing in the radial direction is set equal to the grid
spacing in the circumferential direction.

Contour plots of pressure from solutions on
different grids computed with OVERFLOW and
OVERHI are shown in Figures 4 and 5, respectively.
The OVERFLOW contours vary in a manner
consistent with a second-order accurate method, i.e.,
the shift in contours decreases by a factor of four
each time the grid spacing is halved. The OVERHI
results do not vary with grid spacing except for some
small differences on the downstream side of the
cylinder.  The flow is resolved on even the coarsest
grid shown. The !/16 grid has a minimum wall-
normal spacing of �r/R ∼ 0.2. OVERFLOW was never
intended for use with such inadequate grid resolution
but OVERHI produces results on this grid which are
comparable to OVERFLOW’s solution on a grid eight
times finer. OVERHI and OVERFLOW do converge
to the same solution on fine grids.

Figures 4 and 5 are a convincing demonstration of
the ability of high-accuracy methods to accurately
simulate flows on coarse grids. However, the
motivation for using high-accuracy methods is to
obtain accurate solutions with less CPU time, not
fewer grid points. Figure 6 presents results for error in
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the computed drag coefficient, C , versus  CPU times the surface. There are no “boundary layers” forD

required for convergence. Since this is an inviscid pressure or fluid velocity. OVERHI seems to have
subsonic flow, there should be no drag and C  is a fully resolved the flow for ds  = 0.0025. TheD

valid measure of the error in the numerical solution. OVERHI solutions are accurate, even for the coarsest
This figure shows that the OVERHI solution on the grid, everywhere except the upper surface of the
!/16 grid is almost as accurate as the OVERFLOW airfoil. Except on the upper surface of the airfoil, the
solution on the !/128 grid. OVERHI requires only greatest variations between the ds = 0.01 contours
2% of the grid points and 3% of the CPU time and the contours for finer grids result mainly from the
required by OVERFLOW for the same level of plotting method.
accuracy. These are significant savings and are for a Because of the low-order c-grid boundary
two-dimensional problem. Larger savings would occur condition, OVERHI does not exhibit the high-order
in three dimensions. convergence of force coefficients which was seen for

The results in Figure 6 are for grids with radial the inviscid cylinder flows. However, OVERHI is
spacing at the cylinder surface which is the same as in more accurate than OVERFLOW for a given grid
the circumferential direction. When the same series of spacing. 
runs was performed for grids where the initial radial
spacing was 10% or 30% of the circumferential Other configurations
spacing, similar results were found. The results above OVERHI has also been used for laminar thin-layer
are typical and no cases were found where Navier-Stokes calculations, three-dimensional
OVERFLOW performed better than this relative to calculations, and transonic flow calculations, but
OVERHI. comprehensive grid refinement studies have not been

Subsonic-Inviscid Airfoil Calculations
The final set of results for the high-accuracy

methods are for two-dimensional inviscid flow over a
NACA-0012 airfoil.

The grids used in the calculations are C-type grids
which extend 30 chord lengths away from the airfoil
surface. The grids used are classified by the minimum
grid spacing on the airfoil surface, ds . The gridmin

spacing varies by a factor of two on the surface, so
that a grid with ds  = 0.01 chord lengths has amin

maximum spacing on the airfoil surface of 0.02 chord
lengths. The spacing normal to the surface is ½ of
ds .min

A high-accuracy C-cut boundary condition has not
been implemented in OVERHI. This degrades the
global code order of accuracy to be the same as
OVERFLOW for c-grids. However, it is still possible
to compare the solutions to see how OVERHI
performs.

Simulations were performed for subsonic inviscid
flow at an angle of attack of 10 degrees and a
freestream Mach number of 0.2. Figures 7 and 8 show
contours of Mach number for OVERFLOW and
OVERHI, respectively. The main points to note are
that OVERFLOW, even for the finest grid, has a
significant “boundary layer” for the Mach number,
while OVERHI has eliminated this boundary layer for
the two finest grids. The “boundary layer” for the
Mach number is actually a boundary layer in
temperature, which increases the Mach number near

min

min 

carried out.

Conclusions

From the results presented above, it is clear that
high-accuracy methods have the potential for reducing
CPU time and grid size requirements for CFD
calculations by at least two orders of magnitude for
two-dimensional calculations and by a higher ratio for
three-dimensional calculations. Savings of 98% in
CPU time have been demonstrated for a two-
dimensional subsonic case with an implicit scheme
which was not modified to account for spatial high-
accuracy. This represents a lower limit on the
potential savings from high-accuracy spatial
discretizations.

It is not possible to conclude which of the
schemes evaluated in the first results section of this
paper is most appropriate for use in CFD.  The
dispersion characteristics of all of the nondiagonal
schemes were comparable.  The combination of dual
time-stepping with the diagonal schemes remains to
be evaluated.  For convergence rate, the compact
schemes seem to have a small advantage.
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Figure 1  Comparison of the computed pulse shape
with the exact solution for the convection of a density
disturbance:

(C-1) 4th order, block tridiagonal, compact implicit.
(C-2) 4th order, Abarbanel-Kumar.
(C-3) 4th order, diagonal, compact, implicit.
(C-4) explicit R-K-4, 4th order compact right--hand
side (rhs).
(C-5) Beam-Warming 2nd order in space implicit,
4th order accurate rhs.
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Figure 2 : Convergence of the diagonalized algorithm
shown by the L  norm of density residuals for inviscid2

flow over an airfoil at M=0.3 and �=10 deg. (R2-L2)
Second order central-difference on both the right hand
side (rhs) and left hand side (lhs). (R4-L4) Fourth
order explicit central-difference (rhs) and (lhs) with
pentadiagonal matrix inversion. (R4c-L4c) Fourth
order explicit compact-difference (rhs) and (lhs) with
tridiagonal matrix inversion.

Figure 3 : Convergence of the diagonalized algorithm
shown by the L  norm of density residuals for inviscid2

transonic flow over an airfoil at M=0.8 and �=0.1
deg. (R2-L2) Second order central-difference on both
the right hand side (rhs) and left hand side (lhs).
(R4c-L4c) Fourth order explicit compact-difference
(rhs) and (lhs) with tridiagonal matrix inversion.

Figure 4 : Computed pressure contours for inviscid
flow past a cylinder at a Mach number of 0.2. Results
from OVERFLOW are presented for grids with
circumferential spacings of !/16, !/32, !/64 and
!/128. Flow is from left to right and the grid lines
are from the !/16 grid.

Figure 5 : Computed pressure contours for inviscid
flow past a cylinder at a Mach number of 0.2. Results
from OVERHI are presented for grids with
circumferential spacings of !/16 and !/32. Flow is
from left to right and the grid lines are from the !/16
grid. 
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Figure 6 : Error in C  is plotted versus CPU time onD

an HP C180 for OVERFLOW and OVERHI. The
simulations are for steady inviscid two-dimensional
flow past a circular cylinder at a Mach number of
0.2. 

Figure 7 : Isocontours of Mach number for inviscid
flow past a NACA-0012 airfoil at a freestream Mach
number of 0.2 and an angle of attack of 10 degrees.
Results are from OVERFLOW for several different
grids. dS  is the minimum grid spacing along themin

airfoil surface.

Figure 8 : Isocontours of Mach number for inviscid
flow past a NACA-0012 airfoil at a freestream Mach
number of 0.2 and an angle of attack of 10 degrees. 
Results are from OVERHI for several different grids. 
dS  is the minimum grid spacing along the airfoilmin

surface.


