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ABSTRACT

Nonlinear indicial response theory addresses the need for
high-fidelity prediction of nonlinear phenomena such as
unsteady aerodynamics.  The present paper describes a
particular implementation of nonlinear indicial theory in
which it is assumed that the indicial and critical-state
responses of a nonlinear system can be parameterized based
on the instantaneous motion state.  These parameterized
indicial and critical-state responses form a kernel which can
be determined in principle from experiment, computation,
or analysis.  The application described in this paper
considers a 65�degree delta wing undergoing forced roll
oscillations at a high angle of attack.  A new extraction
algorithm is applied to identify the system�s kernel of
indicial and critical-state responses.  It is shown that, using
this kernel, one can accurately predict the unsteady
aerodynamic response of the wing to novel maneuvers.

NOMENCLATURE

Symbols and abbreviations

b Wing span (1.90 ft)
c Wing chord
C Rolling moment coefficientl

CS Critical State
CSR Critical State Response
f Frequency
IPS Indicial Prediction System
IR Indicial Response
M Mach number
NIR Nonlinear Indicial Response
sgn Sign
t Time
U Freestream velocity (330 ft/s)

�

	C /	- Indicial response of rolling moment withl

respect to roll angle
�f Build-up of generic aerodynamic load, f

�f Critical-state response of fCS

- Roll angle
% Body axis with respect to the freestream
) Auxiliary time variable
f (t) Basis functionj

Subscript and Superscripts
c Critical
CS Critical State
DR Deficiency Response
dyn Dynamic
QS Quasi-static
� Time-asymptotic value (except for U )

�

" Derivative with respect to time

1.  BACKGROUND

Flight simulation is playing an increasingly important role
in the development of new aircraft systems.  To uncover
potential problems during the early design phase requires
efficient high-fidelity modeling of nonlinear aerodynamic
phenomena such as unsteady flow separation, shock
movement, and vortex bursting at high angles of attack.
Future uninhabited combat air vehicles (UCAV) will take
advantage of high dynamic lift and can be expected to
experience high g�s, thus increasing the importance of
capturing nonlinear unsteady aerodynamic phenomena.
Present aerodynamic models used in stability and control
analysis are based to a large extent on linear representations
which are, at best, quasi-steady and which cannot
adequately model the nonlinearities associated with post-
stall aerodynamics, including bifurcations and hysteresis.
Thus, there is a need to enhance current flight simulation
capabilities using rapid nonlinear aerodynamic math models
capable of representing these effects.  Recent studies
suggest (Refs. 1�6) that this need can be fulfilled by using
nonlinear indicial response (NIR) models. 
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The work of Reference 1 showed the feasibility of using To achieve the stated objectives, the following methods
nonlinear indicial theory as a viable tool for rapid unsteady were used.  The development of the extraction portion of
aerodynamic prediction.  A model was developed to predict the Indicial Prediction System was first tested against a
the unsteady aerodynamic loads associated with flight variety of ªsynthetic dataº (for which an exact answer is
maneuvers at high angles of attack and high pitch rates. known), the complexity of which was increased in a
This model was based on key simplifications of nonlinear systematic manner.  The robustness and convergence
indicial theory and on efficient parameterizations of the properties of the extraction method (Ref. 12) were then
indicial and critical-state responses.  To reduce the a priori
unknown effects due to prior motion history,
parameterizations based only on "local" information, such
as the instantaneous angle of attack and pitch rate, were
introduced.  The resulting method was validated
(Refs. 2,3) against two nonlinear systems.  The first system
(Ref. 7) modeled "Cobra"-type flight test maneuvers of a
fighter aircraft.  The second nonlinear system (Ref. 8) was
an artificial neural network trained to reproduce the
aerodynamic characteristics of a rapidly pitching wing
undergoing dynamic stall.  Reference 1 demonstrated the
feasibility of the nonlinear indicial response approach.  The
method was shown to be considerably more accurate than
aerodynamic stability derivatives-based approaches for
unsteady flow.  The method was also considerably faster
than computational fluid dynamics (CFD) methods and
became increasingly accurate as more indicial functions
became available.  Thus, an important conclusion of these
earlier studies was that nonlinear indicial theory
(Refs. 9,10) offers a viable solution which can fulfill the
need for efficient and accurate modeling of nonlinear
"plant" characteristics.  The knowledge of these
characteristics is a prerequisite for structural response
feedback techniques and control system configuration
design.

2.  OBJECTIVE AND APPROACH

The goal of the present study (Ref. 11) was to provide an
unsteady aerodynamic modeling capability based on
nonlinear indicial theory.  This goal was to be accomplished
through two main tasks.  The first task was to extend the
nonlinear indicial prediction capability developed in
Reference 1 by improving functional interpolation,
extending the capability for multidimensional
parameterization, and by adding the capability to handle
multiple critical-state crossings.  The second task was to
produce a "companion code," which would be capable of
extracting the indicial and critical-state responses from
existing data.  Together, these two codes would form the
"Indicial Prediction System."  The first component of the
system constructs a nonlinear response based on
prerecorded indicial and critical-state functions.  The
resulting nonlinear prediction can be generated
inexpensively and for arbitrary inputs.  The second
component of the system extracts from experimental data
the indicial and critical-state responses which must be fed
into the prediction model.

evaluated through parametric changes in data content, noise
characteristics, and the parameters of the extraction itself.
The method was subsequently applied to real aerodynamic
data (65-degree delta wing at 30 degrees angle of attack),
where its robustness was once again verified by (a) filtering
the data to various degrees and (b) perturbing the content of
the training data subsets.

For the prediction portion of the Indicial Prediction System,
comparisons were made, whenever possible, to exact,
analytical answers.  When analytical solutions were not
available, the computed predictions were compared to
numerically generated ones, using separate computational
capabilities (for example, the calculations generated in
Ref. 4).  In particular, the nonlinear predictions of the
Indicial Prediction System were validated against both the
neural network and Goman-Khrabrov systems examined in
Phase I (Refs. 3 and 2, respectively).  Of particular
relevance to the validation effort was the availability of
Myatt�s NIR model (Ref. 5) of the rolling moment for the
65-degree wing configuration, which was used extensively
for this purpose (see Ref. 6).

The objective of this paper is to present the results of
applying the complete system (consisting of both the
extraction and prediction capabilities) to the rolling
moment, pitching moment, and normal force coefficients of
the 65-degree delta wing.

This application of the Indicial Prediction System is
intended as a demonstration of the use of the system as a
whole.  Section 3 gives a brief theoretical introduction.
This is followed by the Results section, which is organized
as follows.  First, the parameter space partitioning based on
the quasi-static data is described.  The various data
processing steps are then given.  Section 4.3 details the
extraction procedure and the nonlinear indicial response
model used.  The results include extracted indicial and
critical-state responses, the error metrics of the prediction,
and predictions of novel maneuvers.  The details of the
extraction method can be found in a companion paper,
Reference 12.

3.  THEORY AND PREDICTION METHOD

Nonlinear indicial response (NIR) theory (Refs. 9,10) was
developed to address the need for high-fidelity prediction of
nonlinear unsteady aerodynamics.  By representing the
build-up of the aerodynamic loads using a generalized
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superposition integral which accounts for the effects of flow The Indicial Prediction System performs two main tasks,
bifurcations, nonlinear indicial theory provides a tool to one of which is concerned with the direct problem and the
understand and address nonlinear aspects of flight other with the inverse problem.  The direct problem is that
mechanics problems, particularly motion history effects. of calculating the response of a nonlinear system, once its
Nonlinear indical theory is a conceptually attractive tool indicial and critical-state responses are known.  The inverse
because it has been shown (Ref. 13) that the nonlinear problem consists of determining the system�s kernel of
indicial response can, under certain conditions, be derived nonlinear indicial and critical-state responses, based on
from the Navier-Stokes equations. observed data.  In general, the indicial and critical-state

The theoretical derivations can be found in a number of computational, experimental, or theoretical means,
references, for instance Refs. 3, 6, and 12.  The present whichever are appropriate or available.  Thus, the complete
application of nonlinear indicial theory incorporates system addresses the following needs:
simplifications which have permitted its implementation in
a versatile computer program, the Indicial Prediction
System (IPS), Ref. 14.  These simplifications assume that
the indicial and critical-state responses can be parameterized
based on the motion state at the time these responses are
initiated, which is not to be confused with the relationship
between the aerodynamic forces themselves and the prior
motion history.  Indeed, the present simplifications, which
result in a parameterized, nodal representation of the
indicial and critical-state responses, are entirely compatible
with the notion that the nonlinear aerodynamic loads at
moderate and high angles of attack are highly dependent on
motion history.

The core mathematical function performed by IPS is that of
calculating the build-up in a dependent variable DEP  asi

(1)

where the DOF  are the participating degrees of freedom forj

DEP , and where each IR  is the so-called ªindiciali ij

responseº of DEP  with respect to DOF .  The slashedi j

integral sign notation is intended to represent the fact that
the integral must be split at critical-state encounters, and
that at these points, a critical-state response (jump response)
CSR  must be added.  Each function IR  can be thought ofij ij

as the time-dependent analog of the aerodynamic derivative
of DEP  with respect to DOF .  Note that the indicial andi j

critical-state responses in IPS are parameterized responses.
 The IPS methodology provides a great deal of flexibility in
defining what these parameters are.  In principle, the
parameters can be independent variables, dependent
variables, combination groups thereof, or alternate variables.
They can be discrete or continuous, and can be defined in
arbitrary numbers.  Thus, true unsteady (motion history)
effects are accounted for by the device of a generalized
convolution integral (Eq. (1)); however, IR  and CSRij ij

parameterizations are based on the parameter values
calculated at the time these responses are initiated (in other
words, parameters must be calculated at time ), and
not (t�)) or t.

responses of a nonlinear system can be determined by

" High-fidelity prediction of nonlinear plant
characteristics

" Ability to include empirical knowledge into the system
" Ability to be ªtrainedº on known input-output transfer

function characteristics

The latter capability (inverse problem) was implemented in
IPS by means of a robust extraction technique based on the
method of singular value decomposition.  This extraction
module was validated extensively against synthetic data,
both with and without noise.  The method was shown to
behave robustly in synthetic data tests and in tests where
various amounts of filtering were used on experimental
data.  Most importantly, the extracted indicial and critical-
state responses were shown to converge with successive
enrichments of the training data sets (Ref. 12). 

4.  APPLICATION TO THE 65�DEGREE
DELTA WING

The 65-degree delta wing database provides an excellent
test bed for the testing of nonlinear indicial response
models.  The database was collected as part of a joint
program involving the U.S. Air Force Research Laboratory
(formerly USAF/WL) and the Canadian Institute for
Aerospace Research (IAR).  As a result of this program, a
wealth of unsteady aerodynamic responses are available for
a variety of motions and flow conditions.  Although the
database includes other Mach numbers (M) and body axis
angles (%) with respect to the freestream, the results
presented here are for the conditions M = 0.3 and % = 30æ.
The maneuvers under consideration are forced rolling
motions -(t).  The available aerodynamic force and moment
coefficient time histories include the rolling moment C ,l
pitching moment C , normal force coefficient C , yawingm N

moment C , and side force C . The motions include bothn Y

harmonic motions of various mean angle, amplitude and
frequency, and ramp-and-hold motions of various rates and
initial and final roll angles.  A schematic of the wing model
is shown in Figure 1.
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Fig. 1 Delta Wing Model Geometry (from Ref. 5).

Aside from the wealth of unsteady aerodynamic data
available, the case of the rolling 65-degree wing at high
angles of attack is interesting because it incorporates
complex flow physics and flow state transitions (Figure 2)
which are associated with considerable time lags with
respect to the forcing motion.  An additional benefit is that
flow physics are reasonably well-understood and that the
characteristics of the flow are well-documented (Refs. 15-
18).

Fig. 2 Leeward Leading-Edge Vortex Burst at - = �5æ
(from Ref. 16).

4.1 Static Data and Partitions

From previous analysis of flow visualization results and
force and moment discontinuities, the roll angle range is
split into seven regions:

Region I : �4.05æ � - < 5æ
Region II : 5æ � - < 8.5æ
Region III : 8.5æ � - < 11.3æ
Region IV : 11.3æ � -
Region V : �8.3æ � - < �4.05æ
Region VI : �11.0æ � - < �8.3æ
Region VII : - < �11.0æ

The static (time-averaged) coefficient data are shown in
Figure 3 for C , C , and C .  Within each region orl m N

partition, the data are fitted using low-order polynomials. 

  Fig. 3. Polynomial Fits to Static Force and Moment
Coefficient Data.

4.2 Data Processing

As previously mentioned, the available unsteady data
include both harmonic excitation and ramp-and-hold types
of rolling motions.  The data processing steps differ,
depending on motion type.  Each is described in the
following subsections, which discuss the successive steps of
data preparation for the purpose of extraction: (i) ªrawº
data, (ii) low-pass filtering, and (iii) dynamic data
component.

4.2.1 Preparation of ªRawº Data

The harmonic data consisted of phase-averaged data.  The
number of realizations used for phase-averaging was on the
order of 20, consistent with previous studies (Refs. 15,18).
The resulting data are assumed to be phase-locked to the
excitation and are referred to here as the ªrawº or
ªunfilteredº data.

The ramp-and-hold data were processed in accordance with
the methodology previously developed by Grismer and
Jenkins (Ref. 16).  This multistep process can be
summarized as follows.  The force balance is first
calibrated.  Tare and wind-on data are then calibrated and
low-pass filtered.  The cut-off frequency of the low-pass
filtering was determined based on comparisons of the wind-
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on and wind-off data for a number of maneuvers.  The consist of a mixture of harmonic and ramp-and-hold data.
frequency cut-off was 145 Hz for the normal force and Note: the terminology used here is that a ª64-harmonicº
pitching moment coefficients, and 100 Hz for the rolling
moment and the roll angle.  The inertial effects for the
rolling moment coefficient were determined based on the
tare runs by exploiting the expected correlation between the
twice-differentiated roll angle and the rolling
moment (Ref. 17).  This required specialized processing to
infer the roll angle at the balance center, which is where the
rolling moment was measured.  Once the inertial effects
were determined, they were subtracted from the wind-on
measurements in order to obtain the aerodynamic loads.
The resulting force and moment coefficient data are what
are referred to here as the ªrawº data (also referred to as
ªunfilteredº data, for reasons of consistency with the
harmonic data and further processing steps, see below).

4.2.2 Low-Pass Filtering

In order to investigate the sensitivity-to-noise of the
extraction method (Ref. 12), it has been necessary to
experiment with various levels of smoothing of the data.
This further data processing step was carried out as follows.
For harmonic motions, the data were Fourier analyzed and
a fixed number of harmonics of the fundamental excitation
frequency were retained.  For ramp-and-hold motions, the
employed methodology was the same as that previously
used by Myatt (Ref. 19).  First, the data were reflected to
define artificially a fundamental period.  Then, the data
were Fourier decomposed, and a specific number of
harmonics of the fundamental were retained.

  Fig. 4. Filtered and Unfiltered Dynamic Rolling Moment
Response for +7° to +4° Ramp-and-Hold Motion
(Maximum Roll Rate: 4 rad/s).

It was found in the present study that the low-pass filtering
on the harmonic data had a more consistent effect if,
instead of maintaining the number of harmonics constant for
a given set of data, the upper frequency were kept constant.
This was done in each case by automatically adjusting the
number of retained harmonics so as to achieve the desired
bandwidth.  For extraction purposes, the training data

case actually refers to: (i) 64 retained harmonics for the
ramp-and-hold data and (ii) a bandwidth of 64 Hz for the
harmonic data.  Unless otherwise specified, the data used
for training is 32-harmonic.  An example of ªrawº and low-
pass filtered data is given in Figure 4 for the case of a
ramp motion from - = 7æ to - = 4æ.

4.2.3 Dynamic Data Component

The extraction method described in Ref. 12 identifies
deficiency responses, rather than indicial responses.  (The
deficiency response is the indicial response, minus its time-
asymptotic value).  Likewise, the results of the critical-state
response extraction are really the dynamic component of the
critical-state responses (loosely referred to as critical-state
deficiency response, CSDR).  For this reason, it is the
dynamic component of the data which must be supplied for
purposes of extraction.  This dynamic component is
obtained by subtracting the quasi-static or time-averaged
component from the data.  To avoid noisy estimates of the
dynamic component the quasi-static component at a given
roll angle is taken to be the value of the fit to the static
data (Figure 3).  Note: it is important that the subtraction
of the static load curves be carried out last, in order to
retain sharp jumps at the critical states.

4.3 Extraction Procedure

The present section is used to describe the steps taken to
extract the indicial and critical-state responses for the 65-
degree delta wing.

4.3.1 NIR Model

The indicial model that was constructed is designed to be
valid in Regions I through VII (�30æ < - < 30æ) for the
rolling moment C , and Regions I, II, and IIIl

(�4.05æ < - < 11.3æ) for the pitching moment C  andm

normal force C .  All IR/CSR extractions carried out (i.e.,N

of C  with respect to -, of C  with respect to -, and of Cl m N

with respect to -) are generically denoted 	C /	-.  Ax

common parameterization of the 	C /	- IR/CSR space wasx

used, where each indicial or critical-state response is
parameterized by the instantaneous roll angle, -, and the
sign of the instantaneous roll rate, sgn(d-/dt).  Thus, there
are two critical-state responses per partition transition (one
for positive roll rate and one for negative roll rate), for a
total of 12 critical-state responses.  Within each partition,
the indicial response nodes were laid out at regular
intervals, as shown in Figure 5.  Because of the dual
parameterization, there are actually two indicial response
nodes per roll angle, for a total of 38 indicial responses (for
C ).l
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portion of the indicial responses and an antisymmetric

Fig. 5 Overlay of (i) Analytical Fits to the Static Data and
(ii) Nodal Indicial Response Locations.

4.3.2 Basis Functions

The extraction of deficiency responses requires their
expansion on some basis function set, f (t).  All IR/CSRj

extractions used a common set of exponential basis
functions, defined as

(2)

This choice of basis functions was designed to bracket time
constants ranging between 1/8 = 0.125 seconds (for j = 1)
and 1/64 = 15.6 milliseconds (for j = 8).

4.3.3 Training Data

The extraction results were obtained in stages, using only
small amplitude maneuvers.  The latter are defined as
rolling motions for which the roll angle time history spans
at most two partitions.

The staged extraction methodology was carried out as
follows.  The indicial responses of Region I were extracted
first, using maneuvers confined to Region I.  The critical-
state responses between Regions I and II as well as the
indicial responses in Region II were then extracted using
motions confined only to Region I and Region II.  The
motions whose trajectories visit Regions II and III were
then used to extract the Region III IR nodes, as well as the
CSR nodes between Regions II and III, and so on.

In this manner, 28 IR nodes and 8 CSR nodes,
corresponding to Regions I through V, were extracted for Cl

(similarly: 18 IR nodes and 4 CSR nodes, corresponding to
Regions I through III, for C  and C ).  Since the staticm N

rolling moment response is, nominally, an antisymmetric
function of the roll angle, the 	C /	- nodes involvingl

Regions VI and VII were obtained by mirroring.  This
procedure was necessary because of the lack of small
amplitude data in these regions.  The mirroring operation
involved a symmetric reflection about zero for the dynamic

reflection about zero for the critical-state response
deficiency responses (CSDR):

(3)

No special treatment was required for the static components
of these responses, since the time-asymptotic value of the
indicial response is the value of the static slope dC /d-, asx

determined from the analytical fit to the static data.
Similarly, the time-asymptotic value of critical-state
responses is determined on the basis of the static
discontinuities, if any, of the analytical fits across partitions.

A summary of the number of training maneuvers used at
each stage of the extraction, along with their breakdown
according to whether the motions are periodic or ramps, is
given in Table 1.

Region #IRs #CSRs Basis
Coeff.

Training Data Sets

Total Harm. Ramp

I 10 0 80 15 318

II 4 2 48 20 1939

III 4 2 48 4 2125

IV 6 2 64 32 1648

V 4 2 48 0 2323

VI 4 2

VII 6 2

Table 1 . Number of Training Maneuvers Per Stage of the
Extraction.

A total of 153 maneuvers (for C ) was used for training outl

of a total of 650 available maneuvers.

Table 1 also gives the number of basis function coefficients
which each stage of the extraction yielded (that number is
the number of nodal (IR and CSR) responses to be
extracted, times the number of basis functions).  As a
general rule, the number of available maneuvers dictates the
amount of information (i.e., the number of basis
coefficients) that can be extracted.  If N maneuvers yield
�N pieces of information on average (for an individual data
set, the yield � is the number of significant eigenvalues of
the motion matrix, see Ref. 12), the NIR model design and
extraction must take this constraint into account, such that

If the motions are pure harmonic, it can be shown that
� = 2.  In the case of the 65-degree delta wing, the motions
are a mixture of harmonic and ramp-and-hold motions, and
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the yield factor � was empirically estimated at
approximately 4 for this particular data base. 

4.4 Results

This section documents the results of the extraction
procedure.  The raw results, namely, the extracted indicial
and critical-state responses are shown first.  This is
followed by an error metrics analysis, which involves the
prediction of the training data from the extracted responses.
Finally, the extracted IR and CSR are used for the
prediction of novel data.  Unless otherwise specified, the
results correspond to the 32-harmonic rolling moment
coefficient.

4.4.1 Extracted Responses

Indicial Responses.  A sample of the extracted deficiency
responses is given in Figures 6 through 9.  Figures 6, 7,
and 8 correspond, respectively, to the nodal locations
- = 0æ, - = 4æ, and - = 8æ.  Each figure depicts three
responses: the extracted response for positive roll rate, the
extracted response for negative roll rate, and the deficiency
response corresponding to Myatt�s NIR model (Refs. 5,19),
which is included for reference.

Fig. 6 Extracted Rolling Moment Deficiency Responses at
- = 0æ.

Significant differences can be observed at - = 0æ and
- = 8æ between the time constants for positive roll rate and
negative roll rate.  It is also interesting to notice, for these
cases, that the deficiency response corresponding to Myatt�s
model appears to lie somewhere in between the positive and
negative roll rate responses.  This is, perhaps, not
surprising, since, in Myatt�s model, the indicial responses
are parameterized by roll angle only, irrespective of roll
rate.  At - = 4æ the differences between positive and
negative roll rates are reduced and, correspondingly, good
agreement is found with Myatt�s response.

Fig. 7 Extracted Rolling Moment Deficiency Responses at
- = 4æ.

Fig. 8 Extracted Rolling Moment Deficiency Responses at
- = 8æ.

Fig. 9 Comparison of Extracted Deficiency Responses for
C , C , and C  at - = 8æ, d-/dt < 0.
l m N

Similar results have been obtained for the pitching moment
and normal force coefficients, although these cannot be
compared against Myatt�s model (which is for C  only).  Forl
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reference, Figure 9 shows the extracted deficiency
responses for C , C , and C  for - = 8æ and negative rolll m N

rate.  Note that the variety of shapes and apparent time
constants is obtained with the same set of basis functions.

Fig. 10 Extracted Critical-state Response at -  = 5æ,
CS

Positive Roll Rate.

Fig. 11 Extracted Critical-state Response at -  = -4.05æ,
CS

Negative Roll Rate.

Fig. 12 Extracted Critical-state Response at -  = 8.5æ,
CS

Negative Roll Rate.

Critical-state Responses.  A sample of the extracted
dynamic component of the critical-state responses is shown
in Figures 10 through 13.  The first three figures
correspond to the rolling moment critical-state response.
Figures 10 and 11 depict the dynamic jump response
incurred when the wing rolls from Region I to Region II,
and from Region I to Region V, respectively.  Figure 12
corresponds to the critical-state encounter from Region III
to Region II.  (For a discussion of the physical meaning of
these critical-state transitions, see Reference 16).

  Fig. 13 Extracted Critical-states Response for C , C  and
l m

C  at -  = 5æ and Positive Roll Rate.
N CS

A rough estimate of time constants associated with the
various critical-state responses is given in Table 2.  Since
the responses are not of exponential type, the so-called
ªtime constantsº were determined as the time it takes for
the dynamic CSR component to decay 63% from its peak
value.  This time was measured from the peak time and, in
the event of multiple extrema, the peak corresponded to the
last local extremum (i.e., the measure characterizes the final
period of decay).  While somewhat subjective, this measure
was applied consistently across the range of extracted
responses and is compared in Table 2 to Myatt�s results.

Critical State
Time Constant

present Myatt

I Ý II 0.3 0.32

II Ý I 0.38 0.51

II Ý III 0.59 0.3

III Ý II 0.51 0.29

III Ý IV 0.22 --

IV Ý III 0.27 --

V Ý I 0.31 0.54

I Ý V 0.37 0.33

Table 2 .  Estimate of Time Constants for Various Critical-
state Responses.
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All numerical values in Table 2 are in seconds.  The time
constants between Region I and its neighbors (Region II for
positive roll rate and Region V for negative roll rate) are
similar to those in Myatt�s model.  However, the reverse
transitions into Region I do not appear to exhibit the longer
time constants found by Myatt.  The extracted time
constants associated with the extracted CSRs between
Regions II and III are almost double those of Myatt�s
model, while the extracted CSRs between Regions III
and IV have a smaller but nonnegligible response time.

A comparison of the simultaneous critical-state responses
for the different force and moment coefficients is shown in
Figure 13 for -  = 5æ, positive roll rate.CS

4.4.2 Error Metrics

In order to determine how good a fit the extracted NIR
model is with respect to the data, the extracted indicial and
critical-state responses can be used to predict the maneuvers
that were used for the extraction.  An example of this
prediction is shown in Figure 14.  In this figure, the
prediction based on the extracted indicial and critical-state
responses (labeled PRESENT) is compared to the data
(symbols).  Myatt�s prediction is also indicated for
reference.

Fig. 14 Prediction of Dynamic Rolling Moment, Harmonic
Motion, , = 8æ2æ, f = 2.2 Hz.

The error metrics are calculated either as the norm-1
(<|predicted � data |>) or norm-2 (<(predicted � data) > ) 

2 1/2

error between the model prediction and the data, computed
over all training maneuvers used within a given stage of the
extraction.  The error was computed using 32 points per
maneuver, equally spaced in time.  A summary of the error
metrics results is given in Table 3.

Extraction of NIR
Stages Maneuvers model

Number Error Metrics

L1-norm L2-norm

Region I 18 present 0.00051 0.00063

Myatt 0.00107 0.00124

Region I-II 39 present 0.00163 0.00227

Myatt 0.00293 0.00419

Region II-III 25 present 0.00124 0.00147

Myatt 0.00148 0.00161

Region III-IV 48 present 0.00129 0.00167

Myatt 0.00128 0.00168

Region I-V 23 present 0.00097 0.00127

Myatt 0.00142 0.00170

Table 3. Summary of Error Metrics for the Rolling Moment
Coefficient.

A comparison of the error metrics between the different
force and moment coefficients is provided in Table 4.  This
time the error is computed over all 82 maneuvers used in
the extraction of Regions I, II, and III.

Force Coefficient
Error Metrics

 L1-norm L2-norm

Rolling Moment 0.00090 0.00128

Pitching Moment 0.00129 0.00186

Normal Force 0.01555 0.01678

Table 4.   Summary of Error Metrics in Regions I, II, and III.

The error was observed to be consistently larger on the
pitching moment, as compared to the rolling moment.  It is
conjectured this may be caused by a smaller deterministic
(phase-locked) signal component for C .  The absolute errorm

is largest for C ; however, the values of C  variations areN N

also an order of magnitude larger, so that the extraction
performance, in terms of fitting the training data, is
approximately similar to the rolling moment.

4.4.3 Novel Maneuvers

The error metrics results described in the previous section
imply that the extracted NIR model is a valid fit to the
training data, which is a necessary condition.  However, the
true test of the usefulness of the method is its ability to
predict novel maneuvers, i.e., maneuvers that were not
included in the extraction.  Figures 15 through 20 provide
a representative sample of the predicted dynamic rolling
moment for novel maneuvers.
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Fig. 15 Prediction of Dynamic Rolling Moment, Harmonic
Motion, , = 5°±4°, f = 1.1 Hz.

Fig. 16 Prediction of Dynamic Rolling Moment, Harmonic
Motion, , = 5°±4°, f = 2.2 Hz.

Fig. 17 Prediction of Dynamic Rolling Moment, Harmonic
Motion, , = 5°±4°, f = 4.4 Hz.

Fig. 18 Prediction of Dynamic Rolling Moment, Ramp-and-
Hold Motion, , = -4°→10°, 1 rad/s.

Fig. 19 Prediction of Dynamic Rolling Moment, Ramp-and-
Hold Motion, , = 10°→-4°, −1 rad/s.

Fig. 20 Prediction of Dynamic Rolling Moment, Harmonic
Motion, , = 5°±12°, f = 1.1 Hz.
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Figures 15 through 17 correspond to harmonic motions of
eight degrees peak-to-peak amplitude, centered at five
degrees roll angle.  The difference between these motions
is the frequency of excitation.  In each case, the motion
trajectory crosses two critical states, so that the calculation
involves four critical-state responses (two for positive roll
rate, and two for negative roll rate) and, naturally, their
various echoes depending on the excitation frequency.
Thus, the calculation of Figure 15 involves contributions
from four critical-state encounters.  The calculation of
Figure 16 requires keeping track of as many as nine
critical-state encounters.  That number is increased to 18
critical-state encounters in the case of Figure 17.

Figures 18 and 19 similarly involve the crossing of two
critical states (one at -  = 5æ and one at -  = 8.5æ),CS CS

except that these are only crossed once in the case of ramp
maneuvers.

Figure 20 corresponds to a large-amplitude harmonic
motion (24 degrees peak-to-peak) centered at five degrees
roll angle.  Consequently, the motion trajectory visits five
partitions and crosses four critical states.  At the low
frequency of the excitation, the calculation requires keeping
track of eight critical-state encounters.

Fig. 21 Prediction of Dynamic and Total Pitching Moment,
Harmonic Motion, , = 5°±4°, f = 1.1 Hz.

For completeness, novel prediction results for different
force and moment coefficients are shown in Figures 21, 22,
and 23.  The lower curves and symbols in these figures
correspond to the dynamic component.  The upper curves
and symbols correspond to the total response (i.e., dynamic
plus quasi-static).

The results of Figures 15 through 23 illustrate the method�s
ability to predict the loads associated with novel maneuvers,
suggesting that the extraction method does indeed identify
the response kernel of the system.

Fig. 22 Prediction of Dynamic and Total Normal Force,
Harmonic Motion, , = 5°±4°, f = 1.1 Hz.

  Fig. 23   Prediction of Dynamic and Total Rolling Moment,
Harmonic Motion, , = 5°±4°, f = 1.1 Hz.

5.  SUMMARY

The necessity to reduce cost of ownership of aircraft has
led, in the past several years, to considerable efforts aimed
at accelerating the design cycle, and the ability to
understand, model, and incorporate early the knowledge of
aerodynamic nonlinearities is considered critical to this
effort.  Nonlinear indicial response technology has the
potential to provide fast, yet high-fidelity aerodynamics,
which is needed for use in preliminary design and flight
simulation applications.

The present implementation of nonlinear indicial theory
makes certain simplifications which allow the representation
of the system�s kernel of indicial and critical-state responses
in a parameterized nodal form.  A benefit of such a
representation is that it is possible to carry out the inverse
problem of identifying the kernel (i.e., the internal
structure) of the physical (aerodynamic) system, based on
the system�s measured behavior.  The extraction method is
described in the companion to this paper, Reference 12.
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The prediction component of the Indicial Prediction System 8 Faller, W. E., Schreck, S. J., and Luttges, M. W.:
was previously validated (Refs. 2-6) against prior Real-Time Prediction and Control of
implementations of nonlinear indicial theory, which Three-Dimensional Unsteady Separated Flow Fields
included the following: (1) simulated roll response of a
delta wing at high angle of attack, (2) ªcobraº maneuver of
a fighter aircraft, (3) neural network system for dynamic
stall, and (4) Myatt�s NIR model of the rolling moment of
the 65-degree delta wing.  The present paper describes the
application of the complete system (extraction and
prediction) to the aerodynamic loads of a 65�degree delta
wing undergoing forced rolling motions at a body axis
angle of 30 degrees to the freestream and a Mach number
of three-tenths.  Specifically, nonlinear indicial and critical-
state responses are extracted for the rolling moment C ,l
pitching moment C , and normal force coefficient C .  It ism N

shown that these, in turn, can be used to accurately predict
the time-dependent aerodynamic loads associated with novel
maneuvers.
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