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ABSTRACT

Practical application of nonlinear indicial theory is of
interest for the rapid, yet high-fidelity, modeling of
unsteady aerodynamic phenomena.  The present paper
addresses the question of how to extract nonlinear indicial
and critical-state responses from empirical data which were
not specifically designed for this purpose.  The extraction
algorithm is presented, and the results are illustrated on the
case of the rolling moment response of a 65-degree delta
wing undergoing forced roll oscillations.

NOMENCLATURE - Roll angle

Symbols and abbreviations

b Wing span
c Wing chord
C Rolling moment coefficientl

CS Critical State
CSR Critical State Response
f Aerodynamic load (generic)
f Frequency
f Indicial response of f with respect to --

Indicial response of f

Deficiency function ( )
H Heaviside step function
IE Indicial Extraction
IP Indicial Prediction
IPS Indicial Prediction System
IR Indicial Response
k Reduced frequency  (k � 3b/2U )

�

n Number of retained harmonicsharm

N Number of nodal extraction roll angles-

p Roll rate
QS Quasi-static

sgn Sign
SMS Stochastic Matrix Solving
SVD Singular Value Decomposition
t Time
T Period of oscillation
U Freestream velocity

�

� Angle of attack
	 Dirac delta function
	C /	- Indicial response of rolling moment withl

respect to roll angle
�f Build-up of generic aerodynamic load, f
�f Critical-state response of fCS

� Boundary condition (generic)

) Auxiliary time variable
) Time at which critical state is crossedc

3 Angular frequency
� Parameter denoting dependence on prior

motion history
� (t) Basis functionj

Subscripts
c Critical
CS Critical State
DR Deficiency Response
dyn Dynamic
QS Quasi-static
� Time-asymptotic value (except for U )

�

Superscripts

CS Critical State
dyn Dynamic component
v Vortical
" Derivative with respect to time
"" Second derivative with respect to time
~ Indicial or deficiency function
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1.  PROBLEM DEFINITION AND OBJECTIVE

In order to predict the dynamics of maneuvering aircraft or
missiles at high angles of attack, it is essential to accurately
and efficiently model the nonlinearities associated with
post-stall aerodynamics, including bifurcations and
hysteresis.  It has been shown (Refs. 1-3) that a possible
solution to these modeling requirements is to make use of
nonlinear indicial theory (Refs. 4,5).

The overall objective of this work was the development of
an aerodynamic prediction capability based on nonlinear
indicial response theory.  The results of earlier
studies (Refs. 6-8) had demonstrated the feasibility of
building such a model using key simplifications based on
the original formulation proposed by Tobak et al. (Ref. 4)
and Tobak and Chapman (Ref. 5).  Indicial-theoretical
models are, by nature, constructive: they attempt to predict
the time-dependent output(s) of a nonlinear ªsystemº based
on the knowledge of the system�s kernel of indicial and
critical-state responses.  The identification of this response
kernel is, therefore, a critical element of any indicial
prediction method.  

The present paper describes a new method allowing the
extraction of indicial and critical-state responses from
experimental data of a fairly general nature.  This paper is
organized as follows.  First, a brief theoretical background
is given.  This is followed by a description of the extraction
algorithm.  Finally, validation examples are provided,
including a demonstration of the method for the case of the
rolling moment response of a 65�degree delta wing at high
angle of attack.  A more detailed description of the
65�degree delta wing nonlinear indicial response model is
also given in a companion paper, Ref. 9.

2.  INDICIAL THEORY

The indicial approach is based on the concept that a
variable f(t), which describes the state of the flow, can be
linearized with respect to its boundary condition (or forcing
function), �(t), if the variation of f(t) is a smooth function
of �(t).  This allows the representation of f(t) in a Taylor
series about some value of � = � ; thus0 

If the response depends only on the elapsed time
from the perturbation �� (a linear time invariant response),
then it may be shown (Ref. 10) that the formal solution for
f(t) is 

(1)

where .

Hence, if the forcing function (i.e., the boundary condition

�) is known and if (the indicial response) is known from
some computation or experiment, then Eq. (1) gives the
value of f(t) for any schedule of the boundary condition �(t)
without the need to compute f from first principles.
 
The basic idea behind the use of nonlinear indicial response
theory (Refs. 4,5) is that the linear formalism, Eq. (1), can
be retained in the form of a generalized superposition

integral, provided that the nonlinear indicial response  is

now taken to be a functional , where �(�)
denotes the dependence on the entire motion history.
Furthermore, the nonlinear indicial theoretical formulation
allows for the presence of aerodynamic bifurcations by
splitting the integral, i.e., for example:

(2)

where the nonlinear indicial function  is defined
as the following Fríchet derivative:

(3)

and �f (t;�() )) is the so-called jump response associatedCS

c

with crossing the bifurcation at time ) .c 

A critical state is defined as a transition from one
equilibrium flow state to another (Ref. 11) and is often
associated with a discontinuity in the static aerodynamic
loads and/or their derivatives (Ref. 12).  The associated
transient response may be associated with large time lags
and is referred to either as the critical-state response (CSR)
or the jump response, �f (t ;�() )). CS 

 c
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3.  KERNEL RESPONSE IDENTIFICATION
AND EXTRACTION

In previous studies, indicial and critical state responses have
been determined either directly, as the difference between
two aerodynamic responses, or by optimization/parameter
identification methods (Ref. 13).  An alternative to these
methods was recently developed.  This alternative scheme
is tightly coupled to the present (nodal) implementation of
nonlinear indicial theory and uses projection methods which
can result in linear systems of equations.  Preliminary
results from the application of this method (referred to as
SMS, see below) were given in Reference 1.  A key
advantage of this method is that it requires no prior
assumptions about the functional form of the indicial or
critical state responses and, most importantly, does not
require that the maneuvers approximate steps.  In the case
where the maneuvers start from rest (start-up maneuvers),
the determination of n indicial responses requires in investigated.  The first one is the method of singular value
principle that an equal number of independent maneuvers decomposition.  This method expands the solution onto the
be performed.  If p critical state responses must also be
extracted, then a total of at least n+p maneuvers is required;
however, this time the system of equations is a priori
nonlinear, unless the location of the critical states is known.

The present section describes the SMS extraction method
and introduces a second method, which is based on the
concept of Singular Value Decomposition (SVD).  A brief
rationale for the introduction of both the SMS and SVD
extraction methods is given first.  This is followed by a
description of the extraction algorithms.  Results obtained
using these algorithms are shown in Section 4.

Fig. 1. Extracted Indicial Response Versus Theoretical 

Indicial Response.  (Input data consisted of four
monochromatic motions, at 3 = 2.09, 4.18,
8.36, 14.66; time constant is ) = 0.33; SMS
method with 200 points, 200 realizations).

Rationale

In the SMS method, indicial and/or critical state responses
are represented as discrete data points (perhaps on the order

of 200 points).  When the motion is periodic, the matrices
which naturally arise from the convolution problem,
Eq. (1), are Toeplitz matrices which happen to be rank-
deficient. The Stochastic Matrix Solving (SMS) procedure
was introduced in an attempt to desingularize these matrices
through the introduction of random perturbations (see
Theory section, below).  This method was shown to yield
accurate results on the basis of synthetic signals (Ref. 1)
and it was later shown to be robust with respect to noise
(Ref. 3).

A drawback of the SMS extraction method is that it is
expensive, requiring hundreds, maybe thousands, of
matrices to be formed.  These performance issues, along
with the lack of a proper mathematical foundation to
explain the success of the SMS procedure, have prompted
us to review the fundamentals of the identification and
extraction scheme.  Thus, two complementary ideas were

basis of eigenvectors, and truncates the expansion in such
a manner that only the significant eigenvalues (those above
the noise floor) are retained.  The second improvement is
to consider a judicious choice of efficient basis functions on
which to expand the IR and CSR solutions.

Fig. 2. Identification/Extraction Result Using Singular Value
Decomposition.  (Input data consisted of three
monochromatic motions, at 3 = !/2, !, and 2!;
time constant is ) = 0.2; single realization).

Prior to presenting the theoretical description and the
algorithm behind the two extraction methods, a preliminary
result for the case of linear indicial theory is shown by way
of illustration.  Figure 1 depicts the SMS-extracted indicial
response f  for a linear system whose known indicial,�

response (dotted grey line) is a simple exponential.  The
indicial response was extracted from four pure-harmonic
motions �(t) using 200 realizations of a 200�200 matrix.
By contrast, Figure 2 depicts the result of an SVD-based
extraction (symbols) versus the theoretical exponential
response (solid line).  The linear system and data set used
in Figure 2 are different from those of Figure 1; thus, this
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is not intended to be a direct comparison between the two
methods.  However, Figure 2 (obtained using sinusoidal
data at three forcing frequencies and uniformly-spaced unit
pulse basis functions) is the result of a single matrix
inversion.

Theory

In this section, we attempt to present the SVD and SMS
extraction methods in a unified way, up to a point, and then
stress where the methods differ in the final solution stage.
A simplified version of the SMS equations is derived.
These equations are then generalized to set up the SVD
problem.  It will also be apparent, in the process, that the
SVD and SMS methods are not mutually exclusive,
although their combination is beyond the scope of the
present paper.

Let us begin with the task of extracting a single indicial
response.  In order to deal with finite-sized systems, it is
preferable to solve for the deficiency response.  (The
deficiency response is the indicial response, minus its time-
asymptotic value).  This can always be done in practice,
provided that the dynamic (i.e., total minus static) response
is known.  For simplicity, let us also consider a single-
input, single-output system.  Let � designate the input, and

f designate the dynamic component of the output.  If  is
the deficiency response of f with respect to �, then,
according to linear indicial theory:

(4)

(the lower bound of the integration is intentionally omitted,
with the understanding that the integration proceeds

backwards in time until ).

In the SMS method, we regard the deficiency response as

being represented by the discrete samples of , ,

which are considered as unknowns which must be solved
for.

This idea is generalized by considering the unknown
deficiency response to be expanded in some basis function
space:

(5)

Thus, in the previously considered case, the coefficients xj

are the discrete samples , and the basis functions 

are unit-height, finite-width pulses which are uniquely
defined, given an ordered sequence , e.g.:

.  Combining Eqs. (4)

and (5) yields the following equation for f(t):

(6)

Equation (6) is regarded as a constraint which the x  basisj

coefficients must satisfy at all times.  Thus, in the SMS
method, we must solve for n coefficients, x  through x , by1 n

constructing at least n independent realizations of Eq. (6)
in order to solve for the x �s.  Each realization might bej

expressed as

(7)

In principle, the coefficients a  can be calculated using anyij

integration method, since the input �(t) is known, and so
are the basis functions, .  The main point is that, for
each realization of Eq. (6), one obtains a row of a matrix.
Thus, the basic principle behind the common extraction
procedure of both the SMS and SVD methods is that,
through multiple instances of the hypothesized indicial
model (the linear model of Eq. (4), in this case), one ends
up formulating a matrix problem of the type

(8)

where  is the motion matrix,  is

the data, and  is the solution vector.

Equation (8) is fundamental to the extraction method.  The
same equation is obtained, whether one is solving for 200
numerical samples of a deficiency response, or, say, three
coefficients in a judiciously chosen basis function expansion
(Jacobi polynomials and the like).  Most importantly, the
same fundamental equation can be obtained for nodal-based
nonlinear indicial response (NIR) schemes.  In this case,
multiple indicial and critical-state responses must be
simultaneously extracted (see below).

The main difference, then, between the SVD and SMS
techniques, relates to how to solve Eq. (8).  Simply stated,
the problem is this: the matrix A is, in general, singular.
Note that this is not at all an unusual situation, as most
inverse problems are, fundamentally, improperly posed.
They require, therefore, the use of specialized techniques
(Refs. 14,15) for solving discrete ill-posed equation
systems.

The reason for which A is singular can be looked at in
several ways.  One of them is the nonuniqueness issue:
there may be more than one indicial response that
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reproduces the data.  For example, it can be shown that, for
harmonic motions, the rank of the motion matrix is two,
regardless of matrix size.  Mathematically, the improperly
posed nature of the inverse problem follows from the well-
known Riemann-Lebesgue lemma, which states that if the
kernel oscillates rapidly, the integral goes to zero in the
limit.  Conversely, computing the kernel from the
knowledge of the output f(t) will tend to amplify any high
frequency components of f(t).  This is the crux of the
matter, since the measurements of f(t) must be assumed to
be noisy measurements.  A second, related reason is simply
that the right-hand side, F, simply may not satisfy the
assumed nonlinear indicial model.  The latter is a function,
among other things, of the parameterization of the problem.

Both issues (lack of a unique solution, when it exists, or
absence of an exact solution) are addressed by considering
the solution to  in the least squares sense.  In other
words, we require that the solution vector X simultaneously

satisfy a set of maneuvers or data sets  in an
approximate sense.  Such a condition is expressed in the
usual manner, i.e., by minimizing the modeling error in the
least squares sense, which results in the following matrix
equation:

(9)

where M is the least squares motion matrix and B is the
least squares data vector.

Note that, depending on the motions available, the linear
system, Eq. (9), may still be stiff, and the challenge is to
find a ªgoodº solution to .  Such a solution is
obtained by different means in the SMS and SVD
procedures.  In the SVD procedure, one carries out a so-
called pseudo-inversion of M, based on the eigenvalue
spectrum of the matrix (see below).  In the SMS procedure,
we use a direct (L-U decomposition) solution procedure;
however, M is first regularized by extending the least
squares solution technique to perturbations on the basis
functions themselves.  The characteristics of each method
will be described in greater detail below.  Prior to doing
this, however, we proceed with the generalization of Eq. (7)
to the case of nonlinear indicial theory.

Let us first consider the case where the deficiency response
at a given point in time can be expressed as a linear
combination of the nodal deficiency responses:

The nodal responses  are the unknowns, and the c �s are
k

the interpolation coefficients.  They (the c �s) are implicitly
k

time-dependent, through the parameterization of the IR/CSR
space (Ref. 16).  If the nodal responses are now expanded
in terms of a common set of basis functions � :j

the following constraint must hold for f at all times t :I

(10)

By in-lining the x  array, Eq. (10) can be symbolicallyjk

rewritten as

(11)

which is the analog of Eq. (7).  Note that x  is now anJ

extended vector containing the basis coefficients of all
nodal responses, and the a  coefficients differ from theIJ

a  integrals only in the sense that the interpolationij

coefficients c  must be taken into account.  Thus, byk

considering k �j  independent realizations of Eq. (11),max max

one ends up formally with the same matrix system AX = B
as Eq. (8).

Let us now consider the existence of a critical state

response whose deficiency response (dynamic component) 
is expressed as a linear combination of nodal critical-state

deficiency responses,  :

If the nodal critical-state responses are similarly expanded
in terms of the same basis functions � :j

then, f(t) at time t  is expressed asI

(12)

It is implicitly assumed, in the adopted notation, that
� (t) = 0 for t < 0.  By in-lining the x  and z  arraysj jk jm

together, Eq. (12) can be symbolically rewritten as
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(13)

which, again, is analogous to Eq. (7), provided that the
extended vector y  contains all (indicial and critical-stateJ

response) basis coefficients, and provided that the matrix
term a  assumes the proper form (integral or algebraic) andIJ

uses the appropriate interpolation coefficients.  The
generalization to multiple critical states (not shown) is
straightforward.

In summary, if k  designates the maximum number ofmax

indicial response nodes to be determined, and m  is themax

maximum number of critical-state response nodes, then
(k +m )�j  = N independent instances of the nonlinearmax max max

indicial formalism will result in an N�N linear system of
simultaneous equations, AX = B.

Having established the generality of Eq. (8) and, therefore,
of Eq. (9) (its least squares counterpart), we now address
the differences between the SVD and SMS solution
procedures.  We begin with the essentials of the SVD
method and conclude this theoretical section with a
description of the current SMS implementation.

In the SVD method, the linear system MX = B is solved by
taking the pseudoinverse of M.  This procedure is the topic
of many texts (see, for instance, References 15 and 17).
We do not attempt to repeat the theory but provide, instead,
the essential idea in a simplified form.  Recall that, if M is
nonsingular and diagonalizable, its eigenvectors form an
orthonormal set {u} and the solution X can be expressed asi

the following linear combination of the u �si

where �  are the eigenvalues and <u ,B> is the inneri i 

product of the u  and B vectors.i

If the matrix M is singular (has one or more null
eigenvectors), then an approximate solution (the
pseudoinverse) is obtained by retaining only those
eigenvectors for which the associated eigenvalue is nonzero.
Thus, if the eigenvalues are sorted and if P eigenvalues (�1

through � ) are nonzero, the pseudoinverse-basedP

approximate solution is

Of course, in practice, one has to decide which of the
eigenvalues are effectively considered to be zero.  At
present, the SVD method is implemented in such a way that
the least squares matrix is formed using a number of

motion matrices R which is equal to the number of data sets
included in the training. 

By contrast, the SMS method solves MX = B directly, using
a standard L-U decomposition technique.  Experience has
shown, however, that, if R is simply the number of
maneuvers, then M is typically too ill-conditioned in order
to solve for X (this is particularly true of harmonic
motions).  Thus, the SMS method artificially extends the
available number of realizations for Eq. (13) by introducing
stochastic perturbations in the matrix.  These stochastic
perturbations are not simply random numbers: they are
perturbations of the basis functions themselves.  In the
present implementation, the widths of the unit pulses are
changed each time a new row of the motion matrix is
formed.  This assures a virtually limitless supply of
equations (realizations) and, in the final analysis,
desingularizes the matrix M.  The key step, implied by this
analysis, is that the perturbed basis functions are, in some
sense, sufficiently similar to each other that each solution
component x  is effectively the coefficient for ai

ªrepresentativeº basis function � .  This is done by choosingi

initially a nominal sequence  and

perturbing this sequence with a zero-mean stochastic
process.  Each row formed then represents a slightly
different expression (realization) of the same instance (a
nonlinear indicial constraint).

The number of formed motion matrices in the SMS method
is typically R = (k +m )�r, where r is the number ofmax max

random perturbations of the M matrix.  Therefore, the SMS
method can be expensive.  For example, if we are
simultaneously solving for 10 responses, each characterized
by 100 samples, and if the number of random perturbations
needed to converge is 100, then the method will assemble
a total of 100 motion matrices, each 1000�1000 in size.
These numbers can be compared to the relative efficiency
of the SVD method.  For example, if 10 responses were to
be extracted using SVD from 15 data sets, and if each
response is represented by four terms of an appropriately
chosen function basis (e.g., Laguerre polynomials), then the
motion matrices are only 40�40 in size, and only 15 such
matrices would need to be formed.

In principle, the SVD and SMS methods are not mutually
exclusive.  For instance, the performance of the SMS
method might be improved with a more efficient choice of
basis functions.  In the case where the basis functions are
Laguerre polynomials, for example, the weight function
multiplying each polynomial is a decaying exponential.  It
is possible that, by changing slightly the time constant of
the exponential from realization to realization, one might
achieve an effect similar to the randomization
(desingularization) previously achieved on the finite-width
pulse function basis.  Conversely, the finite-width pulse
function basis ought to be a valid choice for SVD.
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However, early tests of this idea have not proved not form a complete set.  In other words, the theoretical
successful.  As a result of these early tests, we have (underlying) deficiency responses, DR , DR , and
focussed our efforts on finding basis functions which CSDR, cannot be represented exactly using the Laguerre
exhibit the proper physical behavior for representing polynomial basis.
deficiency responses (i.e., in particular, a decay to zero at
large times).  Several families of orthogonal polynomials
were considered.  Among the possibilities (Ref. 18) are:
Jacobi polynomials (finite support), and Laguerre and
Generalized Laguerre polynomials (both with semi-infinite
support).

4.  RESULTS

As previously discussed, the task of extracting indicial and
critical-state responses from unsteady data can be reduced
to a linear inverse problem.  The ill-posed nature of this
inverse problem leads to the use of specialized solution
techniques and places extra requirements in terms of
method validation.  In other words, since more than one
kernel of responses can reproduce the training data, it is
critical that the method be tested against systems where the
indicial and critical-state responses are known.

For this reason, the extraction method has undergone
considerable scrutiny, using a variety of synthetic data.
Synthetic data are data constructed using a nonlinear
indicial model with known indicial and critical-state
responses.  In this manner, one can assess directly the
accuracy of the extraction procedure, including the effects
of noise and other imperfections, prior to proceeding with
real data, where the ªanswerº is not known.  Unless
otherwise specified, all of the results presented here pertain
to the SVD extraction method.

Basic Demonstration

The basic operation of the extraction technique can be
illustrated by means of the following example.  In this
example, the system being considered is nonlinear, and the
right-hand side is nonexact.  The artificially constructed
data were based on a single parameter (equal to the degree
of freedom, �), piecewise linear system consisting of two
partitions (� < 0 and � � 0) and one critical state at � = 0.
A single deficiency response characterizes the ªleftº
partition (� < 0): DR (t) = �exp(�5t).  Likewise, theLEFT

right-hand side (� � 0) deficiency response is
DR (t) = �2exp(-3t).  In addition, the dynamicRIGHT

component of the critical-state response crossed in the
normal direction (LEFT to RIGHT) is given
by CSDR(t) = exp(-2t).

The training data consisted of four harmonic motions and
one ramp motion.  Two types of basis functions were used
for the extraction: exponentials and Laguerre polynomials.
The exponential basis functions were designed to form a
complete set (� (t) = exp(�jt), j = 1,..,8).  By contrast, thej

Laguerre polynomial basis (which used eight terms also) did

LEFT RIGHT

Fig. 3. Effect of Function Basis on Indicial Response Node
Extraction.

The results of the extraction are shown in Figures 3 and 4.
Figure 3 compares the deficiency responses DR  andLEFT

DR  extracted using either set of basis functions, to theRIGHT

exact theoretical values.  A similar comparison is given in
Figure 4 for the dynamic portion of the extracted critical-
state response. 

Fig. 4. Effect of Function Basis on Critical-State Response
Node Extraction.

Close examination of these curves reveals that the error,

defined as , calculated over all three

extracted responses, is on the order of one percent in the
case of the exponential basis functions, and
approximately three percent when using the Laguerre
polynomials.
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The above results show that the underlying extraction
theory works and that good results can be obtained, even if
the basis functions are not optimal.  The results of
Figures 3 and 4 demonstrate that the method is capable of added noise are practically indistinguishable from one
extracting the same set of IR/CSR nodes using different another, as one would expect.  Small deviations from ideal
basis functions. behavior are observed at noise levels of five and ten

Sensitivity to Noise

The goal of the present section is to illustrate the robustness
of the extraction method by carrying out extractions with
various amounts of noise on the training data.  Two
examples are considered.  The first is based on synthetic
data.  The second corresponds to the 65-degree delta wing
example.

Synthetic Data.  An important exercise in the validation of
the method is to demonstrate convergence with respect to
noise.  The question that must be answered is this, ªHow
sensitive are the extraction results to the presence of noise
in the data?º To answer this question, consider the simple
case of a linear indicial response (i.e., a single node)
extraction.  By construction, the theoretical deficiency
response for this system is chosen to be a five-term linear
combination of Laguerre polynomials.  The five basis
functions used in the extraction were chosen to form a
complete set, and the training data were composed of
harmonic responses of various frequencies.

  Fig. 5. Sensitivity of Single Node Extraction to Data Noise
Amplitude. 

A number of tests were then conducted in which the
synthetic data were contaminated by adding controlled
amounts of noise.  The total noise level, expressed as the
root mean square error percentage with respect to the
amplitude of the zero-noise response, was varied in
increments between 0% and 100%.  In addition, the
frequency content of the noise component could be
controlled by specifying the number of harmonics to be
retained, with respect to the fundamental frequency of the
data.

Figure 5 shows the effect of noise amplitude for a given
number of retained harmonics.  In this figure, the exact
theoretical indicial response and that extracted with zero

percent.  The ªerrorsº only become large when the noise
level reaches 50% and above.  The term ªerrorº is, of
course, a misnomer, since the data are indeed altered by the
presence of the noise and there is no telling, under these
conditions, what the indicial response ought to be.  Indeed,
it was verified that the extracted indicial responses are a
better ªfitº to the noisy data than the theoretical response.

A separate, related exercise is to keep the noise level
constant and to vary the frequency content of the noise
(referred hereafter as bandwidth).  One such example (for
25% noise level) is given in Figure 6.  The interpretation
of these results is less clear, since the behavior with respect
to the number of retained harmonics is not monotonic.  As
previously mentioned, the presence of noise does alter the
data, causing the extracted responses to differ, depending on
the frequency content.  It is interesting to notice, however,
that, even at a 25% noise level, the extracted responses
exhibit a qualitatively similar behavior for a range of
bandwidths.

  Fig. 6. Effect of Data Noise Frequency Content on Single
Node Extraction.

The results shown in Figure 5 indicate smooth convergence
towards the theoretical response.  Taken together, Figures 5
and 6 also give a sense of the relative robustness of the
extraction method with respect to noise.  While this is a
desirable property in general, robustness with respect to
noise is particularly important here, in view of the
improperly posed nature of the extraction problem (see
Section 3).

65�Degree Delta Wing Data.  For real data, the indicial
and critical-state responses are not known.  Thus, it is not
possible to assess the accuracy of the extraction directly.
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One method is to use the extracted responses to repredict The IR and CSR nodes were parameterized by the
the data and calculate the error metrics.   This approach, instantaneous roll angle and sign of roll rate.  A summary
however, only tests the method�s ability to �fit� the data with representation of the IR/CSR node locations with respect
reasonably low error: it is a necessary (but not sufficient)
condition.  Another (more demanding) approach is to
compare the extracted responses to each other and hope to
establish some form of convergence, as the noise level is
gradually reduced.

As previously mentioned, with different noise characteristics
(controlled here by the amount of filtering), the data are,
effectively, different, and there is no reason to suspect
a priori that the indicial or critical-state responses should
resemble each other (see, for example, Figure 6).
However, this is a reasonable expectation when the noise
level approaches zero.

This hypothesis was tested on the dynamic rolling moment
data of a 65-degree delta wing in what was previously
referred to (Ref. 19) as Region I (-4æ < - < 5æ) and
Region II (5æ < - < 8.5æ) of the roll angle range (see Ref. 9
for further details).  These data are part of a comprehensive
database of unsteady aerodynamic responses acquired as a
result of a joint program between the U.S. Air Force
Research Laboratory (formerly USAF/WL) and the
Canadian Institute for Aerospace Research (IAR).  For all
of the tests mentioned here, the delta wing is undergoing
forced rolling motions at a body axis angle with respect to
the freestream of 30 degrees.  The freestream Mach number
is three tenths.

 Fig. 7 Location of IR and CSR Nodes in Regions I and II
of the Static Rolling Moment Curve with Respect to
Roll Angle.

The employed methodology was as follows.  Four separate
training data sets were generated, each with a different level
of harmonic filtering: unfiltered data, 64�harmonic data,
32�harmonic data, and 16�harmonic data (a more precise
definition of these terms is provided in Refs. 9,16).  Both
periodic and ramp data were used in the training data.

to - is given in Figure 7.  A total of 10 IR nodes were
extracted in Region I, four IR nodes in Region II, and two
CSR nodes between Regions I and II (one for positive roll
rate and one for negative roll rate).

The most sensitive region for the extraction is in the
immediate vicinity of the critical state.  Thus, the following
figures focus on the variations of extracted IR and CSR
nodes at - = 4æ (the right-most node pair of Region I),
- = 6æ (the left-most node pair of Region II), and at
-  = 5æ.  The two IR nodes in question are indicated inCS

Figure 7 using a square symbol.  Figures 8 and 9 provide
comparisons of the extracted indicial responses at a - = 4æ
(Region I) and - = 6æ (Region II).  A similar comparison
for one of the CSR nodes is given in Figure 10. 

  Fig. 8 Effect of Filtering on the Extracted Indicial
Responses at - = 4°, Positive Roll Rate.

  Fig. 9 Effect of Filtering on the Extracted Indicial
Responses at - = 6°, Positive Roll Rate.
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Fig. 10 Effect of Filtering on the Extracted Critical-state
Responses at - = 5°, Positive Roll Rate.

The results shown in Figures 8, 9, and 10 are fairly typical.
They illustrate two main points.  The first is the fact that
the responses converge as the noise is reduced (i.e., as
filtering is increased).  The second is the observation that
convergence is most difficult to attain on the critical-state
responses.

Convergence

Perhaps the most important property of the extraction
method is its ability to accurately characterize the
underlying system, as opposed to simply fitting the data.
This must be verified by checking that the theoretical model
can reproduce novel maneuvers, i.e., maneuvers that were
not included in the training data used for extraction
(examples of novel maneuver predictions are given in
Ref. 9).  A related exercise consists of verifying that the
extracted responses themselves do not change significantly
with incremental enrichments of the training data set.

The reasoning is as follows.  If, as more data are included
in the training, the extracted responses ªjump around,º then
it is likely that the extraction process is merely fitting the
data or, alternatively, that the new pieces of information
brought on by the new data are significant enough to
change the most likely kernel.  If, on the other hand, the
addition of new maneuvers to the training data set does not
produce large changes in the results, then the method is said
to be convergent.

This convergence property will be illustrated below on the
example of the rolling moment of the 65-degree delta wing
at a body axis angle with respect to the freestream of 30
degrees and a Mach number of three-tenths.  The extraction
of the Region I indicial response nodes will be considered
first.  This will be followed by the IR and CSR extraction
in Region II.

The total number of available maneuvers in Region I is 18
(15 harmonic maneuvers and three ramp-and-hold rolling

motions).  Instead of carrying out the ten-node extraction of
Region I using all 18 maneuvers, randomly chosen groups
of maneuvers are used for the extraction.  The first training
set consists of three randomly chosen maneuvers.  The
second set consists of those same three maneuvers, plus
three more (randomly picked among the remaining 15).
The third set consists of the previous six, plus three
additional maneuvers (randomly picked among the
remaining 12), and so on.

Figure 11 shows the evolution of the extracted deficiency
response at - = 4æ, d-/dt > 0, as a function of the training
data set.  After nine maneuvers, the extracted indicial
response is seen to converge smoothly towards its value
when using the full data set.  Similar results (not shown)
are obtained for the other nine indicial response nodes.

  
Fig. 11 Convergence of the Extracted Indicial Response,

- = 4°, Positive Roll Rate.

The convergence property is also evident in the error
metrics (Figure 12), which indicate a gradual reduction of
the prediction error as more maneuvers are included in the
training data.

  Fig. 12 Error Metrics for Region I, as a Function of Training
Data Set Enrichment.
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The error metrics are computed as follows.  For a given
training data set, ten IR nodes are extracted.  These
extracted nodes are used, in turn, to predict all 18 Region I
maneuvers.  The error is the norm-2 or rms error between
the data and the prediction, computed over all 18
maneuvers.

Fig. 13 Convergence of the Extracted Indicial Response,
- = 6°, Positive Roll Rate.

Fig. 14 Convergence of the Extracted Critical-state
Response, -  = 5°, Positive Roll Rate.CS

A similar procedure is used for Region II.  There are no
maneuvers in the database that span Region II alone.  Thus,
Regions I and II must be considered together.  The total
number of training maneuvers spanning simultaneously
Regions I and II is 39, of which 20 are harmonic motions
and 19 are ramp-and-hold.  Once again, instead of carrying
out the six-node extraction (four IR nodes of Region II, plus
two CSR nodes) using all 39 maneuvers, randomly chosen
groups of maneuvers are used for the extraction.  The first
training set consists of five randomly chosen maneuvers.
The second set consists of those same five maneuvers, plus
five more (randomly picked among the remaining 34).  The
third set consists of the previous ten, plus five additional
maneuvers (randomly picked among the remaining 29), and
so on.

Figures 13 and 14 illustrate, respectively, the convergence
of the - = 6æ, d-/dt > 0, indicial response node and that of
the positive roll rate critical-state response node.  After 25
maneuvers, the extracted indicial response is seen to
converge smoothly towards its value when using the full
data set.  Similar conclusions are reached for the critical-
state response (Figure 14), although the convergence rate
is somewhat slower.  It is also interesting to notice that one
can get a fairly good idea of the time constants involved
using relatively few maneuvers.

Once again, the convergence property is also evident in the
error metrics (Figure 15), which indicate a gradual
reduction of the prediction error as more maneuvers are
included in the training data set.  

Fig. 15 Error Metrics for Region II, as a Function of
Training Data Set Enrichment.

The convergence property illustrated in Figures 11-15 is
evidence that the extraction method does indeed identify the
system�s kernel of indicial and critical-state responses.

Application to the 65�Degree Delta Wing

Having demonstrated the basic properties of the extraction
algorithm, this Results section is concluded with the
presentation of some of the extracted indicial and critical
state indicial responses for the rolling moment response of
the 65-degree delta wing (see Figures 16 and 17).

As previously mentioned, the 65-degree delta wing database
was collected as part of a joint AFRL/IAR program to study
high angle of attack vortical flow.  As a result of this
program, a wealth of unsteady aerodynamic responses are
available for a variety of motions and flow conditions.
Therefore, the 65�degree delta wing database is an ideal test
bed for the application of nonlinear indicial response
models.  Although the database includes other Mach
numbers (M) and body axis angles (%) with respect to the
freestream, the present calculations are limited to the
M = 0.3, % = 30æ subcase.  The maneuvers under
consideration are all forced rolling motions -(t).  They
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include harmonic motions of various mean angle, amplitude
and frequency, and ramp-and-hold motions of various rates
and initial and final roll angles. 

Fig. 16 Delta Wing Model Geometry (from Ref. 13).
 

Fig. 17 Leeward Leading-Edge Vortex Burst at - = �5æ
(from Ref. 12).

Aside from the wealth of unsteady aerodynamic data
available, the case of the rolling 65-degree wing at high
angles of attack is a challenging one, because it incorporates
complex flow physics and flow state transitions having to
do with changes in the topology of the vortical flowfield. 
Another benefit of using this database is that the physics of
the flowfield are reasonably well-understood and the
characteristics of this flow are well-documented (Refs. 11-
13,19-21).

The description of the nonlinear indicial model and the
results of the extraction on this database for C , C  and Cl m N

are the topic of a companion paper, Reference 9.  A sample
of the raw extraction results is given here for completeness.

Indicial Responses.  Figures 18, 19, and 20 depict the
extracted deficiency responses corresponding, respectively,
to the nodal locations - = 0æ, - = 4æ, and - = 8æ.  Each
figure depicts three responses: the extracted response for
positive roll rate, the extracted response for negative roll
rate, and the deficiency response corresponding to Myatt�s
NIR model (Refs. 13,19) for the same configuration, which
is included for reference.

Differences can be observed at - = 0æ and - = 8æ between
the time constants for positive roll rate and negative roll
rate.  It is also interesting to notice, for these cases, that the
deficiency response corresponding to Myatt�s model appears
to lie somewhere in between the positive and negative roll
rate responses.  This is, perhaps, not surprising, since, in
Myatt�s model, the indicial responses are parameterized by
roll angle only, irrespective of roll rate.  At - = 4æ the
differences between positive and negative roll rates are
reduced and, correspondingly, good agreement is found with
Myatt�s response. 

Fig. 18 Extracted Rolling Moment Deficiency Responses at
- = 0æ.

Fig. 19 Extracted Rolling Moment Deficiency Responses at
- = 4æ.
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SVD-based extractions have also been carried out for the

Fig. 20 Extracted Rolling Moment Deficiency Responses at
- = 8æ.

For comparison purposes, previous results obtained using
the SMS extraction technique are shown in Figure 21.
These results exhibit a lesser sensitivity to roll rate than the
SVD-based extraction shown above.  This question is still
under investigation.

Fig. 21. Extracted Indicial Responses Using SMS, N  = 6.-

Fig. 22 Comparison of Extracted Deficiency Responses for
C , C , and C  at - = 8æ, d-/dt < 0.
l m N

pitching moment and normal force coefficients, although
these cannot be compared against Myatt�s model (which is
for C  only).  For reference, Figure 22 shows the extractedl

deficiency responses for C , C , and C  at - = 8æ forl m N

negative roll rate.  Note that the variety of shapes and
apparent time constants is obtained with the same set of
basis functions.

Critical-State Responses.  An example of the extracted
dynamic component of the critical-state response is shown
in Figure 23, depicting the dynamic jump response incurred
when the wing rolls from Region I to Region II.  This
transition occurs when the point of vortex breakdown on the
windward side of the wing crosses the trailing edge on its
way towards the apex (Reference 12).

Fig. 23 Extracted Critical-state Response at -  = 5æ,
CS

Positive Roll Rate.

Note that, while the time constants appear similar between
the extracted critical-state response and that of the Myatt
model, the latter is believed to be more accurate because
the initial value of the total response (once the quasi-static
value of the jump is added back) starts at zero, consistent
with experimental observation.  On the other hand, there is
no such constraint in the current implementation of the
extraction method.  The parameter identification scheme
used by Myatt (Refs. 13,19) assumes an exponential form
for the lag of the vortical component of the static rolling
moment.  The present extraction scheme assumes a basis
function representation using eight exponentials for the total
dynamic component of the response.  Most importantly,
Myatt�s identification of the critical-state responses is based
on the analysis of ramp-and-hold maneuvers in the vicinity
of critical states, resulting in a good correlation with the
experimental data.  By contrast, in the present method the
extraction of critical states is the result of a global solution
scheme involving all training maneuvers considered and the
same basis function expansion as the indicial responses.
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6.  SUMMARY

The accuracy of indicial models depends on having access
to the nonlinear indicial responses and critical-state
responses of the system being modeled.  The present paper
describes a new extraction method which allows the
identification of indicial and critical-state responses from
experimental data, including harmonic data.  The
characteristics of the method are described, and its
properties are illustrated using synthetic data cases, for
which the ªanswerº (the underlying kernel of indicial and
critical-state responses) is known.  The identification
procedure is then applied to a subset of the Air Force
Research Laboratory / Canadian Institute for Aerospace
Research 65-degree sweep delta wing database.  The
extraction method is shown to be robust with respect to
noise and is also shown to be convergent, in the sense that
nodes extracted from partial data sets converge towards the
full-extraction set indicial and crtical-state responses.
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